
Copyright

by

Anqi Zhang

2024

1



The Dissertation Committee for Anqi Zhang
certifies that this is the approved version of the following dissertation:

Human Visual Detection and Search in Natural Backgrounds

Committee:

Wilson S. Geisler, Supervisor

Ernst-Ludwig Florin, Co-supervisor
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Epigraph

p(A|B) =
p(A)p(B|A)

p(B)

—A paraphrase of Reverend Thomas Bayes, 1763

An Essay Towards Solving a Problem in the Doctrine of Chances

THOMAS

Unless I see in His hands the imprint of the nails, and put my finger into the place of

the nails, and put my hand into His side, I will not believe.

JESUS

Place your finger here, and see My hands; and take your hand and put it into My

side; and do not continue in disbelief, but believe.

THOMAS

My Lord and my God!

JESUS

Because you have seen Me, have you now believed? Blessed are they who did not

see, and yet believed.

—John 20:25–29
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Preface

I am excited for you to read this dissertation. As you search for the information

that might be relevant and helpful to your work, may you find it quickly, or quit

searching neither too early nor too late. As the title points out, in this dissertation

we focus on the topic of human visual detection and search in natural backgrounds,

summarize the effects of various factors to human visual behavior, and formulate

Bayesian decision-making for detection and search tasks.

Growing up, I was quite addicted to computer games. I would constantly

search for more (virtual) resources, better strategies, stronger allies, weaker oppo-

nents, and easier battles for a final victory. That brought me much experience and

made me a “professional” practitioner in visual search, but in digital backgrounds.

For some reason, I am already a professional visual searcher in the real world, like

many other people, but why and how? Therefore, I chose to re-search this topic to

discover and understand the relevant, fascinating mechanisms and computation in

the human visual system, and equally importantly, to apply the results to improve

visual performance of people and machines for good purposes.

I would never be able to complete this work without the guidance and support

of my research supervisor Dr. Wilson S. Geisler. He demonstrated the first-principles

approach of applying the ideal observer and its derivatives to vision science research.

Our journey of research is loaded with surprises and challenges. We have encoun-

tered multiple moments when the freshly analyzed experimental results were simply

puzzling. Then we followed up with plans to further investigate and evaluate the re-

liability/credibility of those surprises, because I do still make coding mistakes. Even-
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tually, we overcome. This scientific process iterates just like the theorem of Reverend

Thomas Bayes. Intuition and prior knowledge are verified or re-evaluated on the basis

of the likelihood of hypotheses given observation. If the observation is insufficient,

we search fore more. Scientists search for objective facts and correspond subjective

opinions to them, not for surprises (mismatch between prior and likelihood) or their

absence.

Now, are you ready to join me in the follow chapters, and search among what

I have searched and found?
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Abstract

Human Visual Detection and Search in Natural Backgrounds

Anqi Zhang, PhD
The University of Texas at Austin, 2024

SUPERVISORS: Wilson S. Geisler, Ernst-Ludwig Florin

Visual detection and search in complex natural backgrounds are fundamental

and ubiquitous tasks for humans. Nevertheless, the information processing of the

human visual system in those tasks have not been well understood. In this disserta-

tion, we applied Bayesian decision theory to analyze and model visual detection and

search. For detection, we found human observers fully exploit spatial modulation

of background contrast, but only partially the background spectrum. We observed

a target was more detectable when its phase was more similar to that of the back-

ground, and explained this effect with the interaction between phase similarity and

intrinsic position uncertainty. Bridging from detection to covert search, human search

performance was surprisingly better than the ideal searcher with the measured human

detectability map, despite substantial loss of detectability in the fovea. Correlated in-

ternal noise is a plausible explanation. More importantly, we found extremely simple

heuristic decision rules for covert search are almost optimal. Our systematic analysis

revealed factors that significantly affect the performance lag of heuristic searchers.

Furthermore, heuristic compositions that result in the same accuracy can be distin-

guished by patterns in location-dependent statistics. Overall, our discoveries deepen
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understanding of human visual detection and search, and will spawn applications in

numerous industries, such as medical image perception, human-computer interface,

and artificial vision.
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Chapter 1: Introduction

1.1 Motivation to study human visual detection and search

Have you ever tried to look at the sky and clouds to spot an impending rain

or storm? Have you ever tried to monitor the change of a traffic light to cross the

street or resume driving? Have you ever tried to find a family member or a friend in

a crowd of people? Have you ever tried to locate a grocery item in a supermarket?

Have you ever tried to unearth a key, a phone, or a document from a messy desk?

Visual detection and search in complex natural backgrounds are fundamental

and ubiquitous daily tasks for humans, and many other animals. Though we perform

these tasks in a seemingly effortless fashion, the associated neural mechanisms, com-

putational and behavioral strategies remains a rich mine of scientific discoveries and

life-changing applications. Understanding how humans detect and search

• provides insights into how our brain processes and applies visual information;

• inspires efficient and robust detection and search algorithms in computer vision;

• guides the development of cognitive models for perception, attention, and decision-

making;

• informs visual design of human-computer interfaces, such as those in medical

imaging, advertising, ergonomics, and security monitoring;

• advises training programs that aim to improve visual detection and search per-

formance, including in natural images, medical images, satellite images, or ther-

mal images.
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1.2 Roadmap of my dissertation

I aspire to understand the complex human visual search behavior in the real

world through experiments, simulations, and theories along this progressing order: (1)

detection: how human observers detect the presence of a target at a singular, fixed

location; (2) covert search: how human observers localize a target among multiple

locations without eye and head movements; (3) overt search: how human observers

choose the direction, magnitude, and frequency of eye and head movements to localize

a target; (4) embodied search: how human observers navigate in and make change to

the environment of visual content to localize a target; (5) social search: how human

observers communicate within a group to localize a target together.

My dissertation presents our discoveries in human visual detection and covert

search. The current overarching research questions I seek to answer are: (1) What

factors affect human performance in visual detection and search? How? (2) What

computation processes do humans use in visual detection and search? How good are

they? To address the first question, I measured performance with psychophysics under

varying conditions of target and background. For the second question, I employed

a hybrid approach based on Bayesian Decision Theory (BDT) and Signal Detection

Theory (SDT), to model, explain, and predict human visual detection and search

in natural backgrounds. This normative, first-principle approach allows intuitive

understanding of human behavior (with concepts such as prior, likelihood, criterion),

and the extraction of some of the underlying computation principles human observers

are using.

For a majority of the visual tasks I will elaborate in the following chapters, the

statistically optimal algorithms are attainable. I will show that this family of algo-

rithms, coined the ideal observer [2], serves as a pivotal performance benchmark for
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human observers. Nevertheless, human observers often do not replicate the calcula-

tion of the ideal observer, due to limited computation capacity, biological constraints,

and/or operational sufficiency of simple heuristics. When the BDT is used to model

human visual behavior, both the ideal and heuristic observers need to be analyzed

and tested.

The current chapter sketches the current understanding of human vision de-

tection and search most relevant to my research. I will first define the tasks of visual

detection and search. Next, I will briefly point out how the human visual system

(HVS) and natural images specify the scope of computation in those two tasks. The

following discussion will focus on the details of design and analysis of psychophysical

experiments to measure and quantify visual behavior. Last but not least, I will lay

out the theoretical framework of the BDT for visual detection and search.

In Chapter 2, I will address how well human observers make use of back-

ground information in space and spatial frequency to detect targets. To start with, I

will describe the 1/f noise and its application to approximate natural images. Then

I will derive the ideal observer for detection in any filtered Gaussian background

with spatially modulated contrast. In short, this optimal algorithm applies template

matching, a popular technique in computer vision, after whitening/flattening the spa-

tial frequency and the local contrast. Lastly, given the experimental results, I will

introduce biological components, such as the contrast sensitivity function (CSF) and

intrinsic position uncertainty (IPU), to model and explain human detection perfor-

mance.

We also investigated the effect of amplitude-spectrum similarity and phase

similarity on human detection performance. In Chapter 3, I will show that the inter-

action between phase similarity and IPU is able to explain the surprising detection
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pattern of human observers.

Chapter 4 bridges visual detection and visual search. I will unearth the factors

affecting performance in covert search. Specifically, we used an ancillary detection

experiment to measure the detectability map of individuals, and incorporated the map

into Bayesian search. Human observers outlandishly outperformed the prediction of

Bayes-optimal decision rule, despite having some loss of detectability in the fovea. The

spatial correlation of internal noise serves as a plausible cause. Also, we discovered

that a wide range of simple heuristics for covert search can achieve near-optimal

overall performance.

I will present, in Chapter 5, a systematic analysis of Bayesian heuristics in

covert search. I will first define the sensory and heuristic spaces, and then show

the degree of performance changes due to varying heuristic search rules. In the

last chapter, I will summarize major findings in my dissertation and explore their

methodological limitations, theoretical implications, and practical applications.

1.3 Tasks of visual detection and search

Detection typically describes the aim and activity of determining the presence

(existence within the range of concern) of a physical object or particular information.

The word “detect” comes from “detegere” in Latin, which means to uncover, reveal,

and expose. Visual detection is detecting based on the sensing and perceiving of light

within the field of vision.

Search typically describes the aim and activity of reducing uncertainty about

the location of a physical object or the distribution of particular information. The

word “search” has a longer history of origin. The words “kirk” in Proto-Indo-
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European, “kirkos” in Greek, and “circus” in Latin have the meanings to bend, sur-

round, go around. Then “serchen” in Old French means to go through and examine

carefully and in detail. Visual search is searching based on the sensing and perceiving

of light within the field of vision.

Visual detection can be regarded as a specific instance of visual search, a per-

spective supported by many theoretical frameworks, including the Bayesian decision-

making model that is the focus of my dissertation. Moreover, from cognitive, neural,

and behavioral perspectives, visual detection represents a simplified yet essential com-

ponent of the broader visual search process.

The physical object or the particular information constitutes the target set,

a specified definition of the “signal” in SDT. For example, breast cells and any sign

of incidental findings form the target set of search in mammography. A path from

the start node to the goal node is the target of the A∗ search [3]. The most relevant

and rigorous literature forms the target set of the search step in a systematic topic

review. If a search reduces the uncertainty of the location of a physical object or the

distribution of particular information to a sufficiently limited scale, then we “find” or

“localize” the target.

The objects or information in the environment (that do not contain the target

set) constitutes the background set, a specified definition of the “noise” in SDT.

For example, the X-ray images of healthy patients are background medical images.

Literature that is not relevant or rigorous is background information.

Both the target set and the background set can consist of from a single, de-

terministic element up to an infinite numbers of elements that follow an empirical

and extremely complex distribution. In a visual task, the most common cases of a

target set include a singular, deterministic projection of an object (e.g., a specific
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American flag with a specific luminance, contrast, rotation, scale, shape, texture,

material, color, etc.), a single object with some of those image dimensions relaxed, a

semantically defined category (e.g., dogs), and multiple categories (e.g., tumor mass,

microcalcification, cyst, and abscess). The most common cases of a background

set include a single background, a statistically stationary family (e.g., 1/f noise), a

semantically defined category (e.g., grass), and multiple categories (e.g., images of

various natural objects and scenes).

The stimulus set combines target and background, representing all possible

observable inputs in detection, search and other behavioral tasks. A stimulus in

visual detection and search can have multiple targets, or no target. A present target,

when being combined with background, can be additive, occluding, multiplicative,

and more.

Figure 1.1 gives an example of a target, a background, a stimulus, and a trial

that are typical in our studies. The target is a simple wavelet with fixed spatial

frequency, orientation, phase, and contrast. The background is a cropped sample

from a grayscale natural image data set. The stimulus is typically generated on a

rectangular monitor. The target is additive (matrix addition of pixel values) to the

background, as shown in Figure 1.1c. A trial begins with the human observer focusing

at the center of the display with the help of a visual cue, and a blank background shows

up to prevent the visual cue from leaking into the stimulus (temporal integration).

For a detection task, the target is present at a known location, or absent. For a

search task, the target is present at one of the potential locations, or absent. Lastly,

sufficient time is given for the observer to make their decision and have their response

recorded.
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(a) (b) (c)

(d)

Figure 1.1: An example of detection and search. (a) Target. (b) Stimulus when the
target is absent. (c) Stimulus when the target is present. (d) Timeline of stimulus
presentation in a trial.

1.4 Computation in the human visual system

The HVS is a wonderfully complex, powerful, and specialized neural network

for perceiving and interpreting the world visually. While the human brain uses ap-
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proximately 20% of the body’s energy supply on average [4], the HVS ranks among

the brain’s highest energy consumers. Also, more than 50% of the sensory receptors

in a human body are located in the eyes [5].

The HVS consists of the eye, the optical nerve, the optic chiasm, the optic

tract, the lateral geniculate body, the primary visual cortex (V1), and some other

cortical areas (e.g., V2, V3, V4, the middle temporal visual area, the inferior temporal

cortex, the lateral intraparietal cortex, the frontal eye field). The cortical areas that

are involved in vision are highly connected [6].

Here I introduce the primary visual processing pathways in simple terms. Light

from the world is registered in the eye, specifically in the retina, by the rod and cone

cells. These photoreceptor cells convert the electromagnetic signal into neural signals.

The optic nerve then transmit the signals to the lateral geniculate nucleus (LGN)

for preliminary processing. V1 receives visual information from LGN and organizes

it with a spatially mapped representation. That concludes the early visual pathway.

The V2 area further prepares the information for downstream pathways. In simplified

terms, the dorsal stream, involving V1, V2, V3, the middle temporal visual area MT),

locates where the things are; the ventral stream, involving V1, V2, V4, the inferior

temporal cortex (IT), recognizes what the things are.

My dissertation applies some of the experimentally verified computations in

the early visual pathway to model human visual detection and search. I always seek

to justify the model components in our computational human vision research through

discoveries in experimental neuroscience and psychology, and also am open to be in-

spired by algorithms in engineering (e.g., image processing), artificial intelligence (AI)

and computer science (e.g., convolutional neural network). The order of justification

and inspiration cannot be reversed; otherwise, the research shifts into the field of
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computer vision.

To start with, a receptive field [7] is a spatial region of the retina where vi-

sual stimuli affect the firing behavior of a specific neuron, such as a retinal ganglion

cell (RGC), a LGN cell, or a V1 neuron. It corresponds computationally to a tem-

plate, which is a predefined pattern to search for an object within an image. The

simplest template has the shape of the target. Multiple regions of the image are com-

pared/matched with the template to maximize a certain similarity measure, typically

the cross-correlation (dot product).

The receptive fields of RGCs and LGC cells commonly have an on-center,

off-surround structure [8], where “on” means being excited and “off” means being

inhibited, in local feature dimensions such as contrast, luminance, orientation, velocity

[9], spatial frequency [10]. The relationship between stimulus features and neuronal

responses in the early visual pathways is modeled by linear and non-linear filters, in

the language of signal processing. A tuning curve describes the neuronal response as

a function of parameters in those features, while a sensitivity function describes the

response of the whole HVS as a function of parameters in those features, such as the

CSF.

The same object with spatially varying local features (e.g., luminance and

contrast) is perceived stably, most likely through normalization and gain control in

the neural circuitry [11, 12]. Local normalization of properties, such as luminance,

contrast and motion, makes typical receptive field or template responses much more

Gaussian-distributed [13–17].

Another fact of the HVS related to computation is the internal noise, that

neural responses have inherent variability independent of visual stimuli [18]. This
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noise is commonly modeled with Gaussian or Poisson distributions as a part of the

overall decision variable for a specific visual task.

Due to internal noise, human observers accept target-like signals centered not

exactly on the known, fixed location [19–25], which is termed intrinsic position uncer-

tainty. I modeled this uncertainty by convolving the template with the background

region with a size slightly larger than the target size and centered on the fixed target

location, and then choosing the maximum or summed response.

Visual memory (working memory and long-term memory) justifies the usage of

prior and Bayesian update in our decision-making framework. Given the limited res-

olution and capacity of memory, computations in visual processing are often heuristic

rather than ideal/exact. For instance, the template may not have the exact same

shape as the target.

1.5 Statistics of natural images

The behaviors and theories of human visual detection and search are tightly

related to the physical and statistical properties of the most typical backgrounds—

natural images. The efficient coding [26] hypothesis states that neurons encode the

information efficiently, that is, with the amount of spikes minimized. Furthermore,

sparse coding (compact representation) of natural images has been found in the visual

system [27]. In visual detection and search, human observers represent those regu-

larities efficiently to distinguish the target from the background, constrained by task

priority and biological limitation. Therefore, measuring and understanding statistics

of natural scenes [28] helps construct both optimal models [29] and biological models

for the HVS.
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The image perceived by the HVS resides in a high-dimensional space. Consider

a digital image consisting of pixels (shorted for picture elements). Each pixel can be

conceptualized as a dimension of the space the image is in. At a distance suitable to

view a laptop, 1080p is the “good enough” video resolution, which refers to 2 million

pixels per color channel. Though human eyes do not have uniform pixels across the

visual field, the numbers of rod and cone cells per eye were estimated to be around 60

million and 3 million, respectively [30]. In other words, an image for the HVS has at

least several million dimensions. For just the second-order statistics, the covariance

matrix of such an image can easily possess beyond 1 trillion elements.

Interestingly, natural images occupy only a low-dimensional sub-manifold of

the overall image space. The statistical regularities (weak symmetry and invariance).

Imagine an image is randomly sampled with each pixel value uniformly distributed.

In most cases, it will resemble much more of a white noise (static noise on an aged

TV screen), than a natural scenery.

However, I have not addressed a fairly important question, that is what makes

an image “natural”. This question is harder to answer in our digital age. I do not

intend to include arbitrary visual outputs on a monitor screen, which adventures to

the whole image space. I also do not need to exclude an image of a monitor with

power off sitting in an office, or a natural image rendered on a monitor screen, as

the statistics of such an image is still consistent with that of the images that are

indisputably natural.

Therefore, I define a natural image as a 2-dimensional projection of natural

light irradiated and reflected from physical objects, or a reconstruction of such natural

light with artificial light. Natural light, in contrast to artificial light, originates from

sources without human intervention, such as the Sun and other stars, the moon,
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fireflies, wildfire, etc. Physical objects, in our definition, can be either natural, such

as water, sky, rocks, plants, animals, or artificial, such as buildings, bridges, and

furniture.

By no means is this the only definition of natural images. The different defi-

nitions varies from context to context, such as visual neuroscience, material science,

thermal imaging, medical imaging, remote sensing, astronomical imaging, game de-

sign, and photography.

The natural image space can be further grouped into overlapping spaces by

observers in the biosphere. In my dissertation, I implicitly focus on natural images

that are visible to human observers (with normal adult vision). That means X-ray,

Gamma rays, infrared, and radio waves produced by natural light source is not natural

for human observers to see.

Now we are well-situated to discuss the properties of natural images. It is self-

evident that image features such as luminance and contrast in a natural image vary

spatially. To prevent information loss of task-relevant features, the HVS can simply

measure each feature at each local location, but that is quite costly. Any spatial

correlation within and across features is desired, because it relaxes the sampling

requirements of a visual system. Here are some empirical results.

Both local luminance and local contrast have the average auto-correlation

rapidly dropped to 0.25 when 2-4 visual degrees away from the point of interest

[31]. However, this result needs to be interpreted considering the range of the focal

length. For a close-up shot of a uniform surface, instead of landscape images, this

decorrelation scale is much larger.

As two point-wise scalars, local luminance and contrast are statistically in-
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dependent or weakly dependent of each other [31, 32]. However, the local matrices

of luminance and contrast seem to share a strong correlation [33]. Those seemingly

inconsistent results could be explained by the possibility that luminance at a local lo-

cation is partially correlated with contrasts surrounding that location. More analyses

are desired on this correlation.

The best-known property of natural images is that their spectra follow a power

law. Extensive literature (see Table 2.1) have shown the amplitude spectral density

(ASD) of a natural image is inversely proportional to the spatial frequency, that is

A(f) ∝ 1

f
(1.1)

This power law implies that lower spatial frequency contents (large-scale struc-

tures and slow modulations) have higher power compared to those of higher spatial

frequencies (fine details and edges) in natural images. De Valois et al. [10] show V1

neurons are selectively tuned to different spatial frequencies. In Chapter 2, I will

show “whitening” in spatial frequency, that is flattening the spectrum with a weight-

ing filter, maximizes signal-to-noise ratio and detection accuracy. I will also answer

if and how much the HVS performs this whitening.

A system that displays the power law is a strong candidate for scale invariance.

A random field f(x) is scale-invariant of order k if f(λx) = λkf(x). If f(x) = ax−b as

a power function, then f(λx) = aλ−bx−b = λ−bf(x). Indeed, Ruderman [34] analyzed

natural images and found the distributions of normalized local contrast, gradient,

and 1/f spectral slope unchanging over widely varying image scales. Thomson [35]

demonstrates the power law and scale invariance for a forth-order statistic. Field [36]

show, for relative contrast energy to be scaling variant in a two-dimensional image, a
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power law for ASD with the exact exponent of 1 is required. For this reason, Pentland

[37] generates natural scenes with fractals.

In other words, the distribution of edges, textures and patterns in natural

images do not change significantly when being zoomed in and out. That means

conclusions based on natural image statistics at one scale, including those in my

dissertation, are promisingly generalizable to most scales. A quick sufficiency test for

the scale invariance of a natural image is to evaluate the 1/f spectral slope.

The 1/f power law of natural image spectra does not address whether natu-

ral images are Gaussian distributed. In fact, they have heavy-tailed, non-Gaussian,

Laplacian-like distributions [34, 38]. Even by averaging pixel values over a small local

region, the mean is still non-Gaussian, probably due to the abundance of very large

and very small gradients [34]. The central limit theorem does not apply because

those pixel values still correlate. Nevertheless, typical receptive field or template re-

sponses normalized by local luminance and contrast become nearly Gaussian [13–17].

The non-Gaussian property of natural images have been simulated by models such as

dead leaves [39] and wavelet trees [40].

To summarize, I explored the correlation structure of statistics in natural im-

ages, highlighted their 1/f power law in the amplitude spectrum, the ensuing scale

invariance, the non-Gaussian behavior, and the Gaussianization by local normaliza-

tion.

For any linearly filtered Gaussian (LFG) noise, the ideal observer transforms

the stimuli as close to a high-dimensional standard normal distribution as possible

(called whitening), and then applies template matching (see Section 2.2 for more

details). Given that the properties of natural images are somewhat similar to those
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of the LFG noise, we found the ideal observer that whitens also detects the target

exceedingly well in natural images.

1.6 Human behavior in visual detection and search

How does the HVS behave in visual detection and search?

Foremost, the central vision of a human has significantly higher resolution than

peripheral vision. The number of ganglion cells declines by a factor of two at just 1.5

to 2 degrees of angle from the line of sight [41–43]. The cone cells, mainly responsible

for daylight (photopic) vision, have considerably higher density in the fovea than in

the near and far periphery [30, 44]. Different from many computer vision models,

foveated vision is a default component of human vision models, especially for search

in a large visual field.

Much early literature on visual search measures the time to find a target object

(reaction time) among other objects (distractors)[45–49]. Reaction time typically

increases as the number of distractors increases, which is termed the set size effect.

The speed of increase ranges from nearly 0 ms/item to dozens of ms/item. Search

is more efficient when the target is defined by a single feature rather than multiple

features [45], and when the target and the distractors are more similar to each other

[48]. Unsurprisingly, asymmetry in search time is found [46] when the shapes of the

target and the distractor are swapped.

Our projects in this dissertation adopt a different paradigm, focusing on ac-

curacy and statistics in the response confusion matrix rather than reaction time, and

noise backgrounds rather than distractors. In overt search, we aim to account for

saccade planning and selection along with spatial-temporal integration of visual in-
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formation, and assume the serial processing of items is a special case when features

require high cognitive efforts or their detectability decline rapidly with eccentricity.

Therefore, we isolate the effect of eye movements with covert search, with presen-

tation durations matched to fixation durations during natural overt search [50, 51].

Nevertheless, the trade-off between search accuracy and search time is theorized [52].

We treated natural images as noise field, and also generated white noise and

1/f noise as backgrounds. No distractor objects are placed in the stimulus; what

“distracts” is the local noise regions that look similar to the target. We incorporated

quantitatively the known effects in visual search, such as peripheral vision, target

detectability, receptive field response, and intrinsic position uncertainty.

The external factors that affect human detection and search include back-

ground luminance, background contrast [53], similarity between target and back-

ground [54], clutter density, semantic grouping, depth and perspective.

How and how much does the foveation of human vision affect the detectability

of a target? In a statistically uniform background, a target is most detectable along

the temporal (horizontal meridian) direction, second along the inferior direction and in

the lower visual field, and last along the superior direction and in the upper visual field

[55–59]. This result is typically summarized as a detectability map in my dissertation.

Looking into the pattern of human eye movements during search, it can be

roughly characterized as fixation periods separated by rapid, voluntary, gaze-shifting

called saccades. Saccades enable the fovea to sample different parts of an image with

high resolution. The typical duration of fixations is around 250 ms [50, 51], so we set

the display duration of stimuli to be 250 ms in all our detection and covert search

experiments, as shown in Figure 1.1d.
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Visual detection and search employs visual attention. The term generally de-

scribes the filtering, selection and weighting of information by object, location, or

feature in the visual field. Bottom-up attention is stimulus-driven, involuntary, ex-

ogenous, and unselected; top-down attention is goal-oriented, voluntary, endogenous,

and selected.

Though the research in my dissertation only treats visual attention as a com-

putational component in the detection and search models, the neural implementation

of visual attention has been extensively studied [60]. Moran and Desimone [61] show

when monkeys are trained to focus on the stimuli at one location and ignore stim-

uli at another, the response of some neurons in V4 to the unattended stimulus was

significantly reduced. Fries et al. [62] measured the synchronization frequency in V4

neurons. When the stimuli are attended, frequencies from 35 to 90 Hz increase, and

those less than 17 Hz decrease. Bisley and Goldberg [63] found some neurons in Lat-

eral Intraparietal Area (LIP) are involved in attention, with their ensemble activity

matching the spatial and temporal dynamics of attention.

Inattentional blindness is the phenomenon where individuals do not notice

salient but task-irrelevant objects. The famous experiment by Simons and Chabris

[64] show when the 192 naive observers were asked to count basketball passes in a

video, almost half of them failed to notice a gorilla or a woman carrying an um-

brella passing by. Gorilla images in chest CT scans [65] and in fingerprints [66] were

not noticed by even expert radiologists and fingerprint analysts. Overall, these ex-

periments indicate the crucial component of information selection in the HVS, that

the top-down, goal-oriented attention can override the bottom-up, stimulus-driven

attention.

In Chapter 4, I will describe and model another type of “blindness” with gain
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control. Individuals were much less sensitive to targets right at fovea in a large visual

field, compared to in a small visual field [59]. They distributed limited attentional

resources to focus on peripheral regions that have more potential target locations, so

search accuracy was increased. This phenomenon is coined “foveal neglect”. Inat-

tentional blindness is not seeing something right in front of you when you are not

looking for it; foveal neglect is not seeing something right in front of you when you

are looking for it.

At the end of this section, I briefly introduce two efficient strategies found in

human overt search. Inhibition of Return refers to the phenomenon where individuals

are less likely to fixate back to the regions they recently examined [67], favoring the

exploration of new areas [68]. Another phenomenon is that fixation locations are

concentrated in a donut-shape region, a few visual degrees from the center of the

display [58, 69]. Interestingly, the upper and lower periphery have the highest count,

consistent with the models taking advantage of the detectability structure that a

target in a uniform background is most detectable along the temporal direction.

Nevertheless, a recent research suggests the fixation locations are distributed more

uniformly [70].

1.7 Psychophysics: Measuring visual behavior

Psychophysics is a field of psychology that studies the quantitative relationship

between physical stimuli and the behavior (either observed or communicated) they

affect. In my dissertation, the scope of psychophysics is limited to tasks with objective

standards (e.g., detection accuracy) instead of subjective preferences (e.g., cuteness

of dogs), assuming beyond reasonable doubt that all human participants sincerely

reported what they perceived to be most likely true.
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Psychometric function describes this relationship using quantitative variables.

A typical case is shown in Figure 1.2a, where the behavioral performance is fitted as a

smooth function of a physical stimulus. When the physical quantity is extremely small

or large, behavior response plateaus; fast change of behavioral performance occurs

when the physical quantity changes from a moderate level. For instance, a target is

totally undetectable with an extremely small amplitude, and totally detectable with

an extremely large amplitude. Nevertheless, the shape of a psychometric function can

vary diversely, even with the assumption of smoothness, monotonicity and asymptotic

saturation (Figure 1.2b-d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: Psychometric function. (a) Fitting from mock data. (b) Change in
“lapse”. (c) Change in “slope”. (d) Change in “location”. (e-h) Thresholds.

In the context of visual detection and search, quantities for physical stim-

uli include target amplitude, background luminance, background contrast, similarity
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between target and background; quantities for behavioral performance include pro-

portion correct, hit rate, and correct rejection rate.

Threshold is a fundamental concept in psychophysics and a major performance

metric in my dissertation. It refers to the value of a physical stimulus when the

behavioral performance reaches a certain value. For example, we define the detection

threshold as the level of target amplitude when the overall detection accuracy just

reaches Φ(1/2) ≈ 69%. Figure 1.2e-h) visualizes the process of obtaining a threshold.

Though the same threshold value does not necessitate the same psychometric function,

visual behavior is comparable through threshold values in slightly different conditions.

1.8 Theories of human visual detection and search in natural
images

What theories are applicable to human visual search in natural backgrounds?

Treisman and Gormican [47] proposed the Feature Integration Theory that has a

two-stage search process. On the pre-attentive stage, basic visual features such as

color and orientation are processed in parallel. On the focused attention stage, a

target as a conjunction of features is searched in space serially. Bundesen [71] (also

[72]) proposed a theory of visual attention, with an attention mechanism selecting

elements/items (filtering) and another selecting categories (pigeonholing).

It is worth pointing out Wolfe et al. [49] proposed visual search is guided by

both bottom-up and top-down mechanisms. In their most recent theory [73], prior

history, reward, and scene syntax and semantics are also involved in guiding attention.

Green and Swets [2] summarized the SDT and hence provided a quantita-

tive framework to describe the process of making decisions based on observation. It

has been successfully applied to the visual detection and search tasks [74–78]. The
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Bayesian detection and search theory I am introducing belongs to this family of the-

ory. Here I start with the core concepts in SDT.

The simplest signal detection model in noise is the equal-variance Gaussian

model (Figure 1.3a). A decision variable D, as a statistic of a system, follows a Gaus-

sian distribution for a certain state of the system N(µa, σ
2) (a indicates the target

is absent in the stimulus), and another Gaussian distribution with the same variance

for another state N(µb, σ
2) (b indicates the target is present in the stimulus). The

state of the system S is either a or b. For simplicity, µa ≤ µb. A single measure-

ment/observation in a trial, noted as d, is a random sample from the distributions

based on the actual state of the system.

Now I define a simple decision rule for the response (estimation of the state)

as

Ŝ =

{
a, d < γ

b, d > γ
(1.2)

where γ is the decision criterion.

Over infinite trials with equal numbers of target-present and target-absent

stimuli, the accuracy

A(γ) =
1

2

[
Φ(

γ − µa

σ
) + 1− Φ(

µb − γ

σ
)

]
(1.3)

To find the optimal criterion where the accuracy is maximized, we obtain

dA

dγ
=

1

2σ

[
ϕ(

γ − µa

σ
)− ϕ(

µb − γ

σ
)

]
(1.4)

That means, the optimal criterion is the value where the probability densities

of the two distributions are equal, that is γo = (µa + µb)/2.
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(a)

(b)

Figure 1.3: Signal Detection Theory. (a) Equal-variance Gaussian model.
(b)Unequal-variance Gaussian model.

The detectability index, also called sensitivity index or discriminability index,

is defined as

d′ =
µb − µa

σ
(1.5)

Detectability characterizes how good the decision variable is to help distinguish

between the two states of the system. A large d′ indicates the signal and noise

distributions are well-separated. A small d′ indicates the distributions overlap. More

difference in the means and less variance increase d′.
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The two-state confusion matrix categorizes trials into the following types:

• hit (true positive) rate: P (Ŝ = b|S = b) = Φ(d
′

2
− γo)

• correct rejection (true negative) rate: P (Ŝ = a|S = a) = Φ(d
′

2
+ γo)

• false alarm (false positive) rate: P (Ŝ = b|S = a) = 1 − P (Ŝ = a|S = a) =

Φ(−d′

2
− γ0)

• miss (false negative) rate: P (Ŝ = a|S = b) = 1−P (Ŝ = b|S = b) = Φ(−d′

2
+γ0)

We cannot measure the decision variable by human behavior in psychophysics

alone, but the empirical hit rate ph and correct rejection rate pcr can be obtained.

Then the corresponding detectability and optimal criterion can be solved reversely as

d′ = Φ−1(ph) + Φ−1(pcr) γo =
1

2

[
Φ−1(pcr)− Φ−1(ph)

]
(1.6)

The calculation of detectability and criterion in our simulations and analyses

also consider the case where the decision variable still follows Gaussian distributions

but with different variance (Figure 1.3b). We have

dA

dγ
=

1

2σa

ϕ(
γ − µa

σa

)− 1

2σb

ϕ(
µb − γ

σb

) (1.7)

The optimal decision rule in this case uses two criteria, but the error from using

a single criterion is usually small. Assume we only apply a single decision criterion,

its optimal value is (still with the convention that µa < µb)

γ0 =
µaσ

2
b − µbσ

2
a + σaσb

√
(µb − µa)2 + 2(σ2

b − σ2
a) ln

σb

σa

σ2
b − σ2

a

(1.8)

The maximal accuracy (proportion correct) PC = 1
2
[Φ(γ0−µa

σa
)+Φ(µb−γ0

σb
)], and

the (generalized) detectability d′ = 2Φ−1(PC).
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1.9 Bayesian decision-making in visual detection and search

In this section, I present our Bayesian visual detection and search theory. It

serves as a normative benchmark, the upper limit of human performance, an observer

skeleton to incorporate and discover the effects of biological factors on detection and

search, and also a compact yet intuitive language to understand and explain how

humans process visual information to make decisions in those tasks.

Consider the target location space X = {0, 1, · · · , n}, where “0” is the location

label for target absence, and “1” is for the first target location, and so on. We define

Y = {1, · · · , n} as the location space without target absence. Therefore, x is the

actual location of the target in a trial and y is the present-location variable, and the

trial response is the estimated location x̂.

Suppose we have a single deterministic target with an amplitude of a and the

corresponding template T (||T || = 1). The target is additive to the background; in

other words, the stimulus at location

∀x ∈ X,∀y ∈ Y, Sy =

{
By y ̸= x

aT +By y = x
(1.9)

Let V be the space for all pixel coordinates v in a target-size matrix. In

the case where background at each location is independent white noise with uniform

variance,

∀y ∈ Y,∀v ∈ V, By(v) ∼ N(By, σ
2
y) (1.10)

where By is the background luminance at location y, and σ2
y is the background vari-

ance at location y.
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Assume an observer is able to normalize the local luminance and obtain Dy =

Sy −By, then

∀x ∈ X, ∀y ∈ Y,∀v ∈ V, Dy(v) ∼

{
N(0, σ2

y) y ̸= x

N(aT (v), σ2
y) y = x

(1.11)

The likelihood at each target location is

∀y ∈ Y, p(Dy|x ̸= y) =
∏
v

1√
2πσy

exp

[
−
D2

y(v)

2σ2
y

]
(1.12)

p(Dy|x = y) =
∏
v

1√
2πσy

exp

{
− [Dy(v)− aT (v)]2

2σ2
y

}
(1.13)

Note that the likelihood when target is absent (x = 0) is included in Equation

(1.12).

The log-likelihood ratio (LLR) of the target at location y versus being absent

is

lly = ln
p(Dy|x = y)

p(Dy|x = 0)
=

1

2σ2
y

(
2aDy · T − a2T · T

)
=

a

σ2
y

(
Dy · T − a

2

)
(1.14)

By definition, the target absent location has an LLR of 0, that is ll0 = 0.

What distribution does the LLR follow? For mutually independent variables

Xi ∼ N(µi, σ
2
i ),

∀ai, bi,
n∑

i=1

(aiXi + bi) ∼ N

(
n∑

i=1

(aiµi + bi),
n∑

i=1

a2iσ
2
i

)
(1.15)

By combining Equations 1.11, 1.14 and 1.15, we have
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lly ∼

{
a
σ2
y

[
N(0, T · Tσ2

y)− a
2

]
y ̸= x

a
σ2
y

[
N(aT · T, T · Tσ2

y)− a
2

]
y = x

∼

N
(
−1

2
( a
σy
)2, ( a

σy
)2
)

y ̸= x

N
(

1
2
( a
σy
)2, ( a

σy
)2
)

y = x

(1.16)

Now I introduce the prior probability of each location (including the target

absent location) as px. According to Bayes’ theorem, the log-posterior ratio at location

x is

lpx = lrx + llx (1.17)

where lrx = ln px
p0

is the log-prior ratio, and lr0 = lp0 = 0.

If p0 = 0, the log-prior ratio becomes a singularity. Because we only need

this term for maximum a posteriori (MAP) response, it can simply be replaced by

the log prior ln px, and allows ln p0 = −∞, so no ideal observer will ever respond

target-absent in a search task if the target is always present.

The maximum likelihood response in a search task is

x̂ = arg max
x∈X

∏
y∈Y

p(Dy|x = x) = arg max
x∈X


∏
y∈Y

p(Dy|x = x)∏
y∈Y

p(Dy|x = 0)

 (1.18)

Equation 1.11 shows ∀x ̸= y, p(Dy|x = x) = p(Dy|x = 0), therefore

x̂ = arg max
x∈X

[
p(Dy|x = y)

p(Dy|x = 0)
if x ̸= 0, 1 if x = 0

]
= arg max

x∈X
lx = arg max

x∈X
llx (1.19)
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where lx = p(Dy |x=x)

p(Dy |x=0)
is the likelihood ratio at location x, with l0 = 1.

Similarly, the MAP response in a search task is

x̂ = arg max
x∈X

lpx or x̂ = arg max
x∈X

[ln px + llx] (1.20)

For mutually exclusive events, the posterior probability that one of the mutu-

ally exclusive events happens is the sum of posterior probabilities that each mutually

exclusive event happens. However, that is not necessarily the case for likelihood. The

likelihood of target presence is undefined, so there is no maximum likelihood response

in a detection task without further assumptions.

The present-absent posterior ratio

LP = ln

∑
y∈Y

[
py
∏
y′∈Y

p(Dy′ |x = y)

]
p0
∏
y′∈Y

p(Dy′ |x = 0)
= ln

∑
y∈Y

ryly (1.21)

where ry =
py
p0

is the prior ratio at location y.

Therefore, the MAP response in a detection task

Ŝ =

{
a LP < 0

b LP > 0
(1.22)

where a is target-absent, b is target-present, consistent with Equation 1.2.

Clearly, if p0 = 1, ry = 0, LP = −∞, the response is always target-absent; if

p0 = 0, ry = ∞, LP = ∞, the response is always target-present.

So far, I have derived the maximum likelihood and MAP responses in detection

and search tasks for a single, deterministic target in white noise. When there is only

one target-present location, the decision rules for detection and search tasks converge.
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However, we as humans do not live in a world of white noise, but of natural

images. How practical can these ideal observers be to understand human visual

detection and search? That depends on how far the framework can be extended and

stretched given our assumptions. Indeed, natural images are well-behaved enough for

these models to achieve high performance and explain human behavior [17, 25, 79, 80].

Notice that the LLR is distributed normally (Equation 1.16). Receptive field

response to natural images is nearly Gaussian after proper normalization [15–17].

We factor out from the LLR a standard normal random variable, Z ∼ N(0, 1), and

interestingly d′y =
a
σy

is the only other variable left (cf. Equation 1.5). Therefore,

lly =

{
d′yZ − d′y

2

2
y ̸= x

d′yZ +
d′y

2

2
y = x

(1.23)

By defining the normalized receptive field response

R′
y ∼

{
N(0, 1) y ̸= x

N(d′y, 1) y = x
(1.24)

The LLR turns into

lly = d′y(R
′
y − d′y/2) (1.25)

In other words, as long as a decision variable follows Gaussian distributions

with equal variance (probably through normalization) at each location, a prior map

and a d′ map are all we need to apply the optimal detect and search rules. For exam-

ple, the ideal searcher in Chapter 4 uses the rule x̂ = arg max
x∈X

[ln px + d′x(R
′
x − d′x/2)].

The d′ map can be measured directly through single-location detection tasks.

I derived the optimal decision rules for more complex detection and search

tasks. Given no experiments in my dissertation were designed under those conditions,
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I recorded my results in the appendix. See Appendix A for a detection or search task

with an objective function as a linear combination of the confusion matrix statistics.

See Appendix B for a detection or search task where multiple targets can be present

(but not at the same location). See Appendix C for a detection or search task where

receptive field responses correlate temporally.

Nevertheless, human observers may use heuristic rules in the decision process

to simplify visual processing. Results in Chapter 4 show many extremely simple

heuristics are sufficient to achieve near-optimal search performance. Systematic anal-

ysis in Chapter 5 is a further investigation on how variation and combination of

heuristics affect search performance.

To summarize, I first introduced my motivation and the values of studying

human visual detection and search in natural images. Then I paved the road for the

rest of my dissertation by explaining what are visual detection and search tasks, what

neural computation mechanisms have been discovered in the HVS, what statistical

regularities natural images conform to, what I already know about human detection

and search behaviors, what theories have been proposed to understand those be-

haviors, and how our Bayesian detection and search theory stands out among those

theories.
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Chapter 2: Detection: Double Whitening

Abstract

We measured human detection performance for various target shapes

presented in Gaussian 1/f noise backgrounds with and without uni-

form contrast over space. We found that the pattern of human

thresholds is not consistent with the ideal observer that whitens

in both space and spatial frequency, but is consistent with a sub-

optimal observer that whitens fully in space and partially in spatial

frequency, with a small level of intrinsic position uncertainty.

2.1 Introduction

In Section 1.5, I explained the spectral and spatial statistics of natural images.

Specifically, natural images have varying local luminance and contrast, and a power-

law spectrum. In this chapter, I will answer the question of how well the human

visual system (HVS) makes use of those statistical regularities to detect targets in

natural images. Much content in this chapter is included in this peer-reviewed article

[80].

Our detection task was specified in the following ways from the definition of

visual detection in Section 1.3. First, each experimental condition had only a single,

deterministic target per trial. In other words, the observer did not need to memorize

multiple target shapes and detect them simultaneously. Second, there was only a

single possible location that the target could be present at. Third, the observer

was asked to focus at the center of the stimulus display and make no saccade. The
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presentation duration was short enough to allow only one central fixation before

response.

We used contrast-modulated 1/f noise to approximate natural images as back-

ground in detection. As specified in Equation 1.1, 1/f noise has an amplitude spectral

density inversely proportional to spatial frequency. Table 2.1 shows this relationship

is valid for natural images. Most literature in the table focuses on the value of β,

where the one-dimensional, cross-sectional radial power spectral density P (f) ∝ f−β.

I calculated the values and ranges of β when they were indirectly reported. A β of 2

indicates 1/f noise (see Appendix D for more clarification).

Ref. Year
#Img Image content β(±σβ)

Main
equipments

Image
format

[81] 1987
19

Sparsely wooded,
rolling grassland,
always centered on
a vehicle, only
during clear or
overcast cloud
conditions

1.76±0.04
(row-
wise),

2.44±0.04
(column-
wise)

Nikon FE
camera fitted

with a Nikon ED
f/5.6, 600-mm
lens, Kodak

Ektachrome 200
Professional
35-mm color
reversal film

128 x 128 sq
px, 8-bit

[36] 1987
6

Trees, rocks,
bushes, water

around England
and Greece

≈ 2

Keystone 3572
camera (35
mm), XP1
Kodak

monochrome
film

256 x 256 sq
px, 8-bit

[82] 1992
117

Published
photographs of
trees, gardens,

animals, mountain
scenery, people,
urban scenery

2.13±0.36

A Philips 56470
CCD-camera
module, Data
Translation

DT2861 frame
grabber

128 x 128 sq
px
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[83] 1992
135

Animals, plants,
the English
countryside,

buildings, vehicles,
and laboratory
equipment

2.40±0.26
(images),
2.36±0.30

(seg-
ments)

Kodak
Tmax-100 35

mm film

256 x 256 sq
px (images),
128 x 128 sq

px
(segments)

[34] 1994
45

Woods, trees,
scrub, rocks, a
stream, central

New Jersey, during
springtime.

1.81±0.01

Sony Mavica
MVC-5500 still
video CCD

camera with a
9.5–123.5 mm
zoom lens

256 x 256 sq
px, 8-bit

[84] 1995
320

Videotapes made
by authors,
subjectively

natural to authors

2.3
Sony Handycam
CCD-FX710

camera

64 x 64 sq
px, 8-bit

[85] 1996
276

Woods, fields,
parks, residential
areas, with varying

distances,
elevations, times of
the day, types of
weather, seasons

1.88±
0.43,

1.88±0.51
(per ori-
entation)

77RS CCD
camera by PCO

Computer
Optics with a 16
mm Sony TV

lens

541 x 512 sq
px, 8-bit

[86] 1997
20

Around New York,
Canada and
Alaska, no
man-made
structures,

including sky and
water

2.20±0.28
A 35 mm

camera with
Ilford XP1 film

512 x 512 sq
px, 12-bit

[87] 1997
82

Trees, plants,
roads, Brodatz
collection of

natural textures

2.38

A SLR camera
with a 50-mm
lens and a

135-mm lens

512 x 512 sq
px, 8-bit
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[88] 1997 16/group

3 groups:
meadows, forest,
close-ups. In the
Sierra mountains
near Reno, Nevada

and at Tahoe
Meadows

2.418±
0.160
(mead-
ows),

2.150±
0.110

(forest),
2.228±
0.422
(close-
ups)

Kodak
DCS420IR
monochrome
digital camera
with added IR

filter

256 x 256 sq
px, 8-bit

[89] 1998
29

Plants, flowers,
trunks, branches,
grass, leaves, trees,
bushes, rocks, and

sky

2.22±0.26

A hyperspectral
camera with a
Fuji CF25B

25-mm f/1.4 lens

256 x 256 sq
px, 8-bit

[90] 2001
133

Wood, field,
close-ups, urban

areas
1.88±0.42

From the
Hateren
database

(Kodak DCS420
digital camera
with a 28-mm

lens)

512 x 512 sq
px, 8-bit

[91] 2003
6,000

River, waterfall,
forest, field,

mountain, beach,
coast

1.98±0.58
(horizon-

tal),
2.02±0.53
(oblique),
2.22±0.55
(vertical)

Corel stock
photo library

256 x 256 sq
px

[92] 2004
95 MIT campus

2.29
(spherical

har-
monic)

Data from MIT
City Scanning

Project

Spherically
tiled

illumination
maps

Table 2.1: Power spectra of natural images.

I will explain the specific computation of the ideal observer in the next section.

Conceptually, the ideal observer extracts spatial information from contrast-modulated
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1/f noise by reliability weighting (i.e., whitening in space), and frequency information

by whitening. We found that the detection pattern of human observers is consistent

with the model observer that fully whitens in space but partially whitens in spatial

frequency, and with a small level of intrinsic position uncertainty. For the partial

whitening in spatial frequency, we reached the same conclusion with multiple previous

studies [93–97].

2.2 Ideal observer in linearly filtered Gaussian noise

A question you might ask is why we did not use natural images directly, rather

than a proxy family of images. The reason is that we sought to separate the spatial

contrast and frequency information from other information in the natural images in

order to investigate how well human observers can make good use of them. Statistical

optimality of the detection rule is undefined in natural images because they are not

strictly statistically uniform (wide-sense stationary). However, we obtained the ideal

observer in contrast-modulated 1/f noise. The difference in performance pattern

between the ideal observer and human observers provides insight on how close the

HVS is to optimally extract spatial and frequency information for detection.

In fact, this ideal observer is optimal for any image combining a known lumi-

nance profile and a linearly filtered Gaussian (LFG) noise. LFG noise is a generalized

case of contrast-modulated 1/f noise, that is any Gaussian noise with linear filters

applied to the spatial and spatial frequency domains, or

N = f1F−1{f2F{N0}} (2.1)

where N0
i.i.d.∼ N(0, 1) is the Gaussian white noise, F is the Fourier transform,
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f1 and f2 are linear filters in space and spatial frequency, respectively.

The LFG noise space is enormous. Figure 2.1 shows a few examples. Am-

plitude spectrum can be filtered in any way, such as with power laws, band-passing,

and band-stopping. Local contrast can be modulated in regions separated arbitrarily,

such as in a chessboard pattern and through dynamic thresholding.

Figure 2.1: Examples of linearly filtered Gaussian image. Rows from top to bottom:
no modulation of local contrasts; local contrasts modulated with a chessboard pat-
tern; local contrasts modulated by regions based on thresholding of local luminance.
Columns from left to right: white noise, 1/f noise, 1/f 1.5 noise, f 5 noise, band-pass
noise, band-stop noise.

When both f1 and f2 are identity filters, no whitening is needed to obtain the

optimal [2, 98] decision variable

R = N · T (2.2)

where N is the initial LFG noise (uniform white noise for optimality), T is the

template of the target. By convention, its Euclidean norm ||T || = 1. One obtains
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the initial LFG noise by subtracting the known mean luminance image from the

background.

This decision variable is a simplified version of the log-likelihood ratio in Equa-

tion 1.14. Because the amplitude of the target and the variance of the noise are

constant, they can be absorbed into the decision criterion. This simple template

matching variable is a sufficient statistic for the maximum a posteriori decision rule.

When f1 is an identity filter, then whitening in spatial frequency produces the

optimal decision variable Rw [99, 100], that is

Rw = Nw · Tw (2.3)

Nw = F−1{f−1
2 F{N}} (2.4)

Tw = F−1{f−1
2 F{T}} (2.5)

where Nw is the LFG noise whitened by the linear filter f−1
2 , and Tw is the

template whitened by the same whitening filter.

The intuition to also whiten the template is that if the target is added to the

background, whitening of the noise will also act on the target, so the template needs

to track this “new” target in the whitened noise.

When f2 is an identity filter, then whitening in space, sometimes called relia-

bility weighting, produces the optimal decision variable Rr [79], that is

Rr = Nr · Tr (2.6)

Nr = f−1
1 N (2.7)

Tr = f−1
1 T (2.8)

where Nr is the white noise with contrast varying spatially weighted by the
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linear filter f−1
2 to regain spatially uniform contrast, and Tw is the template weighted

by the same filter.

Similarly, the intuition to also weight the template is that if the target is added

to the background, reliability weighting of the noise will also act on the target, so the

template needs to track this “new” target in the weighted noise.

As you may have guessed, the ideal observer for detecting a target in an

arbitrary LFG noise whitens in both space and spatial frequency, or

Rwr = Nwr · Twr (2.9)

Nwr = F−1{f−1
2 F{f−1

1 N}} (2.10)

Twr = F−1{f−1
2 F{f−1

1 T}} (2.11)

Figure 2.2 gives a demonstration of the whitening procedure. If the initial

background (upper right) is contrast-modulated (left vs. right) 1/f noise, then

whitening it in space produces uniform 1/f noise, and whitening it in spatial fre-

quency produces contrast-modulated white noise. The ideal observer further per-

forms the complimentary filtering and fully whitens the background. Pay attention

to the change in target shape (template) in the lower right corner of each background.

Reliability weighting modulates the local contrast of the template, while whitening

in spatial frequency sharpens the template (boost in high frequency content).

Transforming a noise as close to a high-dimensional standard normal distribu-

tion as possible maximizes the signal-to-noise ratio for template matching.

In the following discussion, I regard the model with Equation 2.2 as the sim-

ple template matching (TM) observer, the model with Equation 2.3 as the whitened

63



Figure 2.2: Whitening in space and in spatial frequency.

template matching (WTM) observer, the model with Equation 2.6 as the reliabil-

ity weighting (RTM) observer, and the model with Equation 2.9 as the whitened

reliability weighting (RWTM) observer.

2.3 Methodology and experiments

All experimental procedures below were approved by the University of Texas

Institutional Review Board (IRB). Informed consent was obtained from all partici-
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pants. The study included three male participants, aged 22–26. They all had normal

or corrected-to-normal acuity. In a trial, the observer’s head was stabilized with a

chin and head rest.

The stimuli in the experiments were generated with MATLAB 2020a and the

Psychophysics Toolbox [101, 102]. The stimuli were displayed with a resolution of

60 pixels per visual degree on a well calibrated Sony GDM-FW900 cathode-ray-tube

(CRT) monitor. The monitor had a display size of 1920 x 1200 pixels, a refresh rate

of 85 Hz, and a bit depth of 8. Prior to display on the screen, the stimuli were clipped

(< 0.02% pixels), gamma-compressed, and quantized to gray levels in the range of

0-255.

Experiment 1

Psychometric functions were measured in a detection task for 10 conditions:

two types of backgrounds and five target shapes (Figure 2.3). Each condition included

600 trials (10 amplitude levels × 30 trials × 2 sessions) per participant. Amplitude

thresholds were calculated by fitting with maximum likelihood estimation to gener-

alized cumulative Gaussian functions to hits and false alarms, which are

ph(a|α, β, γ) = Φ

[
1

2
(
a

α
)β − γ

]
(2.12)

pfa(a|α, β, γ) = Φ

[
−1

2
(
a

α
)β − γ

]
(2.13)

where ph is the hit rate, pfa is the false alarm rate, a is the target amplitude,

α, β, γ are the slope, shape, and criterion parameters of the generalized cumulative

Gaussian function, Φ[·] is the standard normal cumulative distribution function.
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The detection threshold was defined to be the target amplitude giving d′ = 1.0,

or 69% proportion correct with the optimal (unbiased) criterion. Based on Equations

2.12 and 2.13, the threshold was equal to α. Its confidence interval was obtained by

bootstrapping.

Figure 2.3: Backgrounds and targets in Experiment 1.

The uniform background shared the same total contrast power with the con-

trast modulated background, and had a root-mean-square (RMS) contrast of 20.4%.

The contrast-modulated background had one low-contrast (RMS=7.0%) and one

high-contrast (RMS=28.0%) region; those two regions had a contrast ratio of 4.0,

and randomly alternated between the left and right halves of the display per trial

to reduce effects of contrast adaptation. Both the uniform and contrast-modulated
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background had a diameter of 4.27 visual degrees, or 256 pixels. The mean luminance

of circular background patches was always 46 cd/m2, which was equal to the lumi-

nance outside the patch on the screen. Each background patch was sampled randomly

from a 4096 × 4096 squared-pixel field of 1/f noise. The spatial frequencies below

16 cycles per image were removed from the field before sampling. This ensured the

lowest frequency in the background patch is 1 cycle per patch image.

The targets were a raised-cosine blob, and raised-cosine-windowed sine, trian-

gle, square, and rectangle waves with a duty cycle of 10%. All targets had a diameter

of 1.28 visual degrees, or 77 pixels, and the same level of total contrast power. Except

for the blob target, they all had a mean of zero and a spatial frequency of 1.5 cycles

per visual degree (cpd). The amplitude of the target was defined as the square root

of the sum of the squared pixel values (the square root of the target energy).

In each trial, a central fixation cue was given for 750 ms and then extinguished

for 250 ms (Figure 2.4). Then a stimulus was displayed for 250 ms, that is the typical

fixation duration during natural overt search [50, 51]. The target was present for

half of the trials, and if present, always at the very center of the display. A human

observer was asked to press the left arrow key to respond “target-absent”, and the

right arrow key to respond “target-present”. Auditory feedback was given at the end

of each trial on whether the response was correct.

Compared to previous similar studies of detection in LFG noises [103, 104], we

varied not only the properties of the target, but also the properties of the background.

Experiment 2

The differences between Experiment 1 and this experiment include: (1) The

raised cosine target was not included; (2) All wave gratings underlying the raised-
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Figure 2.4: Timeline of a trial in Experiment 1 (also in Experiment 2). The example
condition includes the triangle wave target and the uniform 1/f background.

cosine window had a spatial frequency of 3.0 cycles per visual degree, instead of 1.5;

(3) All targets had a diameter of 0.64 visual degrees, or 38 pixels; (4) Two of the

three participants in Experiment 1 completed this experiment; (5) This experiment

was run before Experiment 1.

2.4 Human detection performance in 1 / f noise

I will first summarize the pattern of detection performance measured from the

human observers. Then I will describe the detection performance of varying model

observers and compare the average human thresholds with the predictions from those

model observers.

Figure 2.5 provides an overview of human detection performance. As expected,

when the target amplitude increased, the detection accuracy increased for each par-

ticipant in each condition. The range of the overall accuracy typically went from 55%
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to 95%, so the threshold (∼ 69%) was well captured.

Figure 2.5: Psychometric functions of Experiment 1. Each subplot corresponds to
one of the human observers or the average human observer. In each subplot, there
were ten combinations of the target and background conditions. Gray cross-check:
human data; blue curve: psychometric fit; red line: threshold.

For quantitative comparison, thresholds were plotted in Figure 2.6 after being

calculated with

t = 20 log10(α) (2.14)

where t is the amplitude threshold in decibel scale. The multiplier is 20 instead

of 10 because decibels are traditionally used for power, which is proportional to the

square of amplitude. Note that a difference of 6 dB corresponds to a factor of 2 in

threshold change.

Averaged across all five targets, the detection threshold in the modulated

background was 6.1 dB lower than that in the uniform background. In other words,
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Figure 2.6: Thresholds of human observers and the average human observer in Exper-
iment 1. Solid circle: uniform-contrast background; open circle: contrast-modulated
background.

targets are a little more than twice detectable in the modulated background as in the

uniform background.

In both background conditions, the detection threshold decreased mostly mono-

tonically as the mean amplitude of spatial frequencies of the target increased (rc, sine,

tri, sqr, rect). As shown in Figure 2.7, edges, especially sharper and thinner ones,

generate high frequency components. In 1/f noise background, those high frequencies

have higher signal-to-noise ratios than low frequencies.

Psychometric functions in Experiment 2 (Figure 2.8) show consistent relation-

ship between the target amplitude and the detection accuracy. Detection accuracy

gradually increased as target amplitude increased.

Detection thresholds across background conditions in Experiment 2 (Figure

2.9) have a trend also similar to that in Experiment 1. The threshold in the mod-
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Figure 2.7: Amplitude spectra of the targets in Experiment 1.

ulated background was 3.8 dB lower than that in the uniform background. Targets

were more detectable in the modulated background than in the uniform background.

Nevertheless, thresholds varied less across targets.
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Figure 2.8: Psychometric functions of Experiment 2. Each subplot corresponds to
one of the human observers or the average human observer. In each subplot, there
were ten combinations of the target and background conditions. Gray cross-check:
human data; blue curve: psychometric fit; red line: threshold.

Figure 2.9: Thresholds of human observers and the average human observer in Exper-
iment 2. Solid circle: uniform-contrast background; open circle: contrast-modulated
background.
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2.5 Template matching models for human detection

Models without biological constraints

Figure 2.10 demonstrates the computation of ideal template matching models

in our experiments. In 1/f noise, whitening boosts high frequencies and suppresses

low frequencies, so the target looks sharper while the background turns into white

noise. Reliability weighting increases contrast in the low-contrast (left) region, and

decreases contrast in the high-contrast (right) region, so the left side of the target

gains higher contrast while the background becomes uniform in contrast.

Which model observer does the HVS behave most similarly to? To answer this

question, we compared the absolute values of detection thresholds and their pattern of

change across conditions. We fitted model observers to the average human observer

with only one free parameter—an overall efficiency scale factor. This factor shifts

thresholds in decibel vertically.

The TM observer displays a similar pattern of thresholds as the human ob-

server across targets, as can be seen in Figure 2.11. Thresholds decreased monoton-

ically as the mean amplitude of spatial frequencies of the target increased. The rect

target is 11 dB easier to be detected than the rc target. Our explanation is that high-

frequency components have high signal-to-noise ratio in 1/f noise than low-frequency

components. However, TM has the same thresholds in uniform and modulated back-

grounds for each target, unlike the human observers. If the background was white

noise, the TM observer would have identical thresholds in all ten conditions [79],

because the targets and the backgrounds were designed to have the same amount of

total contrast power.

The WTM observer has a steeper decline in thresholds across targets than that

for the TM observer and human observers. The steeper decline occurs because the
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Figure 2.10: Computation of four template matching models without biological con-
straints. (a) The large patch is the actual stimulus with target present. The small
patch is the template of the triangle target, used by the simple template match-
ing (TM, Equation 2.2). (b) Whitened template matching (WTM, Equation 2.3).
The large patch is the whitened stimulus with target present. The small patch is
the whitened template. (c) Reliability-weighting template matching (RTM, Equa-
tion 2.6). The large patch is the weighted stimulus with target present. The small
patch is the weighted template. (d) Whitened, reliability-weighting template match-
ing (RWTM, Equation 2.9). The large patch is the whitened and weighted stimulus
with target present. The small patch is the whitened and weighted template.

WTM observer perfectly exploits the high spatial frequency content in the targets.

Besides the steeper decline, the WTM observer still fails to predict human perfor-

mance because it has the same thresholds in uniform and modulated backgrounds for
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Figure 2.11: Comparison of model and human thresholds in Experiment 1. Open
symbols: uniform background; solid symbols: contrast-modulated background. Black
circles: average human thresholds from Figure 2.6. Colored diamonds: adjusted
thresholds of four model observers that have no biological constraints: (a) TM, (b)
WTM, (c) RTM, (d) WRTM. Thresholds of each model were adjusted with a single
scalar (0.884, 0.459, 0.610, 0.302 for TM, WTM, RTM, WRTM, respectively) to best
match the human thresholds. The RMS errors in decibels are 3.204, 5.717, 1.532,
4.465, for TM, WTM, RTM, WRTM, respectively.

each target.

The RTM observer behaves most consistently to the human observers among

the four models, evidenced by the minimum RMS error. The remaining discrepancy

is that the RTM observer predicts too small of a difference in thresholds between the

raised-cosine and the sine wave targets. The WRTM observer, as the ideal observer

for all ten conditions, predicts too steep decline across targets.

Next, to compare the absolute threshold values, we plotted the difference of

the model and human thresholds in Figure 2.12. Typically, models perform better

than human due to the resolution and memory advantages. If a model has a threshold
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higher than that for a human observer (i.e., human efficiency is greater than 1), then

the model must miss important information processing that the HVS has. Also, if

all the threshold differences in a panel fall on a single horizontal line, then a single

efficiency scale factor is sufficient to align the detection pattern of human and model

observers.

In the contrast modulated background, thresholds of the TM and WTM ob-

servers for certain targets are higher than human thresholds, while thresholds of the

RTM and WRTM observers for all targets are lower than human thresholds. Given

the limited types of visual information in our stimulus, this result indicates the exis-

tence of reliability weighting in the HVS.

Comparing with the ideal WRTM observer, humans are most efficient with the

raised-cosine target and least efficient with the rectangular grating target. Specifically,

human thresholds for the raised-cosine target are 2–7 dB higher than those of the ideal

observer, and 16 dB higher for the rectangular grating target.

The performance comparison between human and model observers in Experi-

ment 2 has similar trends (Figure 2.13). The TM andWTM observers do not take into

account of the contrast modulation as human observers exhibited. Full whitening (in

spatial frequency) generated a much steeper decline in thresholds across targets. The

ideal observer is 8–16 dB better than the human observers, resulting in an efficiency

of 24.7% (Figure 2.14).

Overall, our interim conclusion is that for 1/f noise background, human ob-

servers showed reliability weighting, but not full whitening in spatial frequency.
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Figure 2.12: Absolute difference of the model and human thresholds in Experiment
1. Each panel plots the average human thresholds subtracted by the thresholds of a
model observer. (a) TM, (b) WTM, (c) RTM, (d) WRTM.

Models with biological constraints

We incorporated two properties of the HVS relevant to this detection task:

the contrast sensitivity filtering and the intrinsic position uncertainty.

The early visual pathway filters the input light signal with the optical transfer

function (OTF) of the eye to obtain the retinal image, which is then transmitted

through retinal ganglion cells, bipolar cells, lateral ganglion nucleus to the primary

visual cortex.

There is evidence that optical and retinal factors are primarily responsible

for detectability of foveal targets in uniform-luminance backgrounds. For example,

Bradley et al. [105] find that the optics of the eye and the sampling and filtering of

the midget retinal ganglion cells predict the measured foveal detectability for a wide

variety of targets reported in the ModelFest Dataset [106]. These measurements (from
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Figure 2.13: Comparison of model and human thresholds in Experiment 2. Open
symbols: uniform background; solid symbols: contrast-modulated background. Black
circles: average human thresholds from Figure 2.9. Colored diamonds: adjust thresh-
olds of four model observers that have no biological constraints: (a) TM, (b) WTM,
(c) RTM, (d) WRTM. Thresholds of each model were adjusted with a single scalar
(0.676, 0.354, 0.462, 0.247 for, TM, WTM, RTM, WRTM, respectively) to best match
the human thresholds. The RMS errors in decibels are 1.835, 4.082, 1.969, 3.735, for
TM, WTM, RTM, WRTM, respectively).

16 human observers in 10 labs) include targets of similar size with similar presentation

duration to those in the current study.

To model the foveal amplitude transfer function (ATF) of the early visual

system, we fitted the following function to the ModelFest CSF and normalized it to

a peak of 1.0:

E(f) = k ·OTF (f) · exp(−αf)[1− γ exp(−βf 2)] (2.15)

where OTF (f) is the average human optical transfer function for a 4 mm

diameter pupil at a wavelength of 555 nm as in Watson [107], α, β, γ are fitting
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Figure 2.14: Absolute difference of the model and human thresholds in Experiment
2. Each panel plots the average human thresholds subtracted by the thresholds of a
model observer. (a) TM, (b) WTM, (c) RTM, (d) WRTM.

parameters, with α = 0.856, β = 0.152, and γ = 0.065, and k is the normalizing

constant to ensure Emax = 1.

This eye filter (Figure 2.15) partially suppresses low spatial frequencies and

hence performs a partial whitening operation. As we replaced the full whitening filter

f−1
2 with this eye filter in Equations 2.3 and 2.9, we obtained the eye-filtered tem-

plate matching (ETM) and the eye-filtered, reliability-weighted template matching

(ERTM) observers. The ETM observer shares this critical eye filtering component

as the non-prewhitening eye filter (NPWE) observer, a popular model in the medical

imaging literature [93, 94, 108]. The decision variable for the ERTM observer is
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Rer = Ner · Ter (2.16)

Ner = F−1{E F{f−1
1 N}} (2.17)

Ter = F−1{E F{f−1
1 T}} (2.18)

where E is the eye filter operator.

Because the evidence above have suggested reliability weighting as an infor-

mation processing component of the HVS in this detection task, we will focus on the

ERTM observer in later discussion.

Figure 2.15: Eye filter. Open circles: the average human contrast sensitivity function
normalized to a peak of 1.0. Solid circles: the fit of the eye filter equation (Equation
2.15).

Intrinsic position uncertainty is another internal factor that may contribute

to the differences in thresholds across different types of targets. Intrinsic position
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uncertainty refers to the phenomenon that, even if a target is always presented at

exactly the same physical location on the display screen, and this condition is perfectly

understood by a human observer, the human observer will still accept, intentionally

or not, target-like features in (a small region of) the surrounding background [19–25],

because the observer has and acknowledges the unavoidable internal noise of knowing

the exact target location. In other words, slightly displaced “features” in the noise

background that correspond to the target are considered as evidence of the target.

We implemented this intrinsic uncertainty into our models by applying the

template over a small region centered on the actual target location, and then prob-

abilistically selecting the maximum of the template responses as the final decision

variable. For rough estimate, we assumed the specific parameters of uncertainty were

the same in Michel and Geisler [23]. For an 1-octave, 6-cpd Gabor target, they esti-

mated the standard deviation of the intrinsic position uncertainty in the fovea under

a Gaussian assumption was σU = 0.083 deg, about a width of 0.7 mm at an arm’s

length of 50 cm. Though we did not directly measure the position uncertainty in

this chapter, we later designed an experimental procedure for its measurement (see

Section 3.3).

In summary, the uncertain, eye-filtered, reliability-weighted template matching

(UERTM) observer is
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Ruer(x⃗) = Ner(x⃗) · Ter(x⃗) (2.19)

Ner(x⃗) = F−1{E F{f−1
1 (x⃗)N(x⃗)}} (2.20)

Ter(x⃗) = F−1{E F{f−1
1 (x⃗)T}} (2.21)

Ruer = max
x⃗∈U,∝pU (x⃗)

[Ruer(x⃗)] (2.22)

pU(x⃗) =
1

2πσ2
U

exp

(
−||x⃗||2

2σ2
U

)
(2.23)

where U is the set of all uncertain locations (vectors starting from the actual

target location), x⃗ is a specific uncertain location, and pU(x⃗) is the uncertainty dis-

tribution. After applying the eye filtering, we created a random binary map of ones

and zeros where the probability of “1” at each pixel location was given by pU(x⃗)

normalized with a peak of 0.5. Then the maximum response among the “1” locations

becomes the final decision variable. Notice the uncertain stimulus and the template

were reliability weighted with a filter with values bifurcated perfectly along the actual

contrast modulation boundary.

The ERTM observer predicts a slower decline in thresholds across targets

than the WRTM observer (Figure 2.16a-b, Figure 2.17a-b), because the eye filter

only whitens partially. This less steep change is more consistent with the measured

human detection pattern.

Nevertheless, the UERTM observer is a better predictor of human performance

than the ERTM observer (Figure 2.16c-d, Figure 2.17c-d). For example, the threshold

difference between the raised-cosine and sine wave targets is smaller, as for human ob-

servers. That is because template responses are more correlated for targets with more

low spatial frequencies. Therefore, the same degree of intrinsic position uncertainty
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leads to maximum responses less different than the response without uncertainty (at

the actual target location) for such targets, and thus detection thresholds increase

less.

Figure 2.16: Comparison of model and human thresholds in Experiment 1. Open
symbols: uniform background; solid symbols: contrast-modulated background. Black
circles: average human thresholds from Figure 2.6. Colored diamonds: adjusted
thresholds of the ERTM (a) and UERTM (c) model observers. Thresholds of each
model were adjusted with a single scalar (0.475 and 0.654 for ERTM and UERTM
respectively) to best match the human thresholds. The RMS errors in decibels are
1.663 and 1.189 for ERTM and UERTM respectively. Triangles: absolute difference
of the model and human thresholds in Experiment 1, for ERTM (b) and UERTM (d)
model observers.

In fact, the UERTM observer is the best model among all template matching

models, with the smallest RMS error over the 18 conditions in both experiments

(Figure 2.18a). The average error was about merely 1.0 dB. Notice that there is

only one free parameter for each model observer (the efficiency scaling factor), so the

goodness of fit varies not due to different number of parameters.

The average human observer had an efficiency factor to the UERTM observer
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Figure 2.17: Comparison of model and human thresholds in Experiment 2. Open
symbols: uniform background; solid symbols: contrast-modulated background. Black
circles: average human thresholds from Figure 2.9. Colored diamonds: adjusted
thresholds of the ERTM (a) and UERTM (c) model observers. Thresholds of each
model were adjusted with a single scalar (0.421 and 0.803 for ERTM and UERTM
respectively) to best match the human thresholds. The RMS errors in decibels are
1.603 and 0.968 for ERTM and UERTM respectively. Triangles: absolute difference
of the model and human thresholds in Experiment 2, for ERTM (b) and UERTM (d)
model observers.

almost as high as the TM observer (Figure 2.18b). The decreasing detectability of the

UERTM model results from the intrinsic position uncertainty, with which responses

pick up in the surrounding more noise but not more signal. The detection inefficiency

of human observers (∼ 0.3 to the WRTM observer) can be partially explained by the

eye filtering and intrinsic position uncertainty.

It is out of the scope of this project to measure human detection performance

in natural images and compare them with template matching models. However,

we compared the performance of model observers in 1/f and natural background

(Figure 2.19). The pattern of threshold differences in those two types of backgrounds
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Figure 2.18: RMSE and efficiency scaling of all models to human observers. (a)
RMS error averaged across all 18 conditions in both experiments. The models are
ordered from the highest error to the lowest. (b) Efficiency scale factor for each
model observer, with the ordering of the models the same as in (a). The further
the scale factor below 1.0, the lower the model observer’s threshold relative to the
human threshold. Akaike information criteria (AIC) for model observers based on
all conditions: WTM, 1345.47; WRTM, 701.14; TM, 478.93; ERTM, 259.78; RTM,
263.42; UERTM, 232.34.

are similar. It should be kept in mind that the WRTM observer is no longer the

ideal observer for detection in natural background. Unsurprisingly, the TM observer

has the highest thresholds, and the WRTM observer detects the best. The ERTM

observer is about 2.0 dB better than the RTM observer, showing a modest but real

benefit from the partial whitening of the contrast sensitivity function for detection in

1/f noise, at least for our targets. Interestingly, the partial whitening of the eye filter

is even more beneficial for detection in natural background. Lastly, even the UERTM

observer is limited by the intrinsic position uncertainty, it still performs slightly better

than the TM observer.
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Figure 2.19: Thresholds of models in 1/f noise and natural images. The thresholds
of all models were averaged over the ten conditions in Experiment 1. The bars are
the threshold of the TM observer subtracted by the threshold of one of the five more
sophisticated model observer. Light bars: in 1/f noise background; dark bars: in
natural images. Natural images were high-resolution, calibrated, and sampled from
this dataset [1].

2.6 Discussion

The ideal observer in linearly filtered Gaussian noise whitens in both space and

spatial frequency. On each trial, it applies a spatial-frequency whitening filter and

a reliability-weighting filter to the mean-subtracted input image, and applies both

filters also to the template that has the shape of the target, and then calculates the

decision variable as the inner product between the stimulus and the template that

have both been whitened in space and spatial frequency.

Detection thresholds were measured for a range of targets in uniform and

contrast-modulated 1/f noise backgrounds that have the amplitude spectrum of nat-

ural images. Human thresholds were compared to those of the ideal observer and five
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suboptimal observers, where the only free parameter used to fit each observer was

an overall efficiency scalar. For the model observers without biological constraints,

reliability-weighting without whitening in spatial frequency leads to the detection

pattern most consistent with that of human observers. Further including both the

human CSF and the intrinsic position uncertainty gives rise to the best match of

human performance among all models, with an average RMS error of about 1 dB.

Full whitening in spatial frequency was not found from our experiments, but

the improvement of fit by including the human eye filtering is evidence for partial

whitening, as reported in many previous studies [93–97]. Furthermore, the eye filter

actually improves detectability in 1/f noise and natural backgrounds for the present

range of targets.

Reliability weighting considers the contrast modulation in the background and

predicts a substantial drop in thresholds. The magnitude of the drop is simulated

to be approximately the same for all targets in our experiments. Humans showed a

similar behavior in our experiments (also see the partial-masking effect in [79]).

The effects of non-stationary structure in backgrounds have been measured

and modeled at a larger spatial scale, where the background is stationary only within

the target region [109]. Hotelling and channelized Hotelling observers have been used

for tasks with non-stationary backgrounds [110, 111] because those observers can

take into account the covariance structure in varying regions of the background. In

principle, the usage of the diagonal terms of a full-size covariance matrix in Hotelling

observers can capture local reliability weighting across pixels within the target region

[112].

The implementation of the intrinsic position uncertainty could have been more

elegant. In Chapter 3, we incorporated the uncertainty just as a log-prior term, as
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in Equation 3.4. The spatial variation in uncertainty was represented within the log-

prior, not by a sampling acceptance distribution. However, even though we know

the intrinsic position uncertainty must exist in the HVS, it may be more complex

and nuanced than either of the modeling suggestions. For example, it can vary by

target, background, actual target location, direction of shift, and the idiosyncrasy in

a particular visual system.

Medical images have a lower degree of power-law regularities than natural

images. For X-ray imaging of breast tissue (mammography), the power exponent β

is around 3.0 [113–121]. For computed tomography of the breast (bCT), β is around

2.0 [117, 121]. This implies the methods and results of evaluating the two whitening

mechanisms in this chapter are promisingly transferable to human visual detection

and search in medical images.

For future research, one could use this experimental paradigm to measure and

analyze human detection pattern in natural and medical backgrounds. They have a

less random phase structure than the linearly filtered Gaussian noise. More relevant

targets (e.g., mass and microcalcification) and modulation of local contrast (e.g., by

semantic regions) could be used to ensure the conclusions are practical.

88



Chapter 3: Detection: Phase Similarity

Abstract

Visual detection in natural images is greatly affected by background

luminance, RMS contrast, amplitude-spectrum similarity, and par-

tial masking factor. In this chapter, we measured and analyzed

the effect of similarity in phase, an essential fifth dimension, on hu-

man detection performance. We discovered the target was more

detectable when it was less similar to background in spectral am-

plitude, and surprising more detectable when it was more similar to

background in phase. When we incorporated into template match-

ing models a small level of intrinsic position uncertainty directly

measured from a position-discrimination task, this pattern of phase-

dependent asymmetry emerged. The similarity in phase modulates

the effect of intrinsic position uncertainty with the most likely re-

sponse location attracted to and repulsed from the actual target

location.

3.1 Introduction

In this chapter, I will answer how well the human visual system (HVS) makes

use of the similarity of target and background in phase structure for visual detection,

and what effect the similarity in phase between target and background has on human

visual detection in natural background. Much content in this chapter is included in

this peer-reviewed article [25].
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Neural computations for detection and search in the HVS are efficient and

robust in natural backgrounds. As pointed out in Section 1.5, human observers

distinguish a target from a background by recognizing and exploiting the patterns, or

the physical and statistical regularities in the background. To understand and predict

human behavior in visual detection and search, it is essential to measure and analyze

those properties. Furthermore, by simulating naturalistic or artificial images with

specific statistics, one could test principled hypotheses on how the HVS processes

this information in a biologically constrained and task-relevant manner.

However, most of the early studies are much limited in applying the natural

scene statistics to the detection task. For example, the statistical properties of natural

images were altered [105]. In other cases, only a small number of natural images were

tested [122–124]. Furthermore, often the multiple-interval forced choice procedures

were used [122, 124, 125], which are not the most representative of detection under

natural conditions where one typically does not have the opportunity to compare the

exact same image with and without the target.

Recently, Sebastian et al. [17, 79] used a constrained sampling approach to

measure how various properties of natural background affect performance in a simple

yes/no detection task. Specifically, Sebastian et al. [17] binned millions of patches

of natural background (with the size of the target) into joint histograms along the

dimensions of luminance (L), RMS contrast (C), and cosine similarity of the target

and background amplitude spectra (amplitude-spectrum similarity, SA). They then

measured detection thresholds for backgrounds sampled from a sparse subset of bins

across the whole space. For windowed sine wave and plaid targets added to the

background, they found that amplitude threshold at increases linearly along all three

dimensions, akin to a separable Weber’s law: at ∝ L ·C ·SA (see also [126]). Sebastian
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et al. [79] found another factor, the partial masking factor ||Tp||, so that at ∝ L · C ·

SA/||Tp||. The partial-masking factor entails that for natural backgrounds with the

same luminance, contrast, and amplitude-spectrum similarity, the more the luminance

and contrast varies within the target region, the more detectable the targets are (see

also [80]).

Nevertheless, amplitude-spectrum similarity SA is a phase-invariant similarity

measure. While an amplitude spectrum determines the absolute and relative ampli-

tudes of sine and cosine wave components in an image, the phase structure of an

image determines how those wave components align and misalign with each other,

corresponding to lines and edges in the spatial domain of the image.

Rideaux et al. [127] measured the effect of similarity in the spatial domain on

the detectability of derivative-of-Gaussian targets that were added in different phases

with respect to contours located within natural images. They found that thresh-

olds were lowest when the target was in phase with the contour and highest when

completely out of phase, opposite to the effect of SA. They also found that the ef-

fects of phase-dependent similarity dominate the effects of phase-invariant similarity.

However, their task was not a simple detection task, but covert visual search. The

target could appear anywhere within the 2-degree backgrounds, which was a substan-

tial level of extrinsic position uncertainty. Target locations were artificially correlated

with RMS contrast through a selection procedure based on convolution response. Fur-

thermore, their natural backgrounds had more indoor objects than outdoor scenes.

Here, we measured the effect of phase-dependent similarity for simple detection

in binned natural backgrounds. Similar to Rideaux et al. [127], we found the effect

of phase-dependent similarity is highly symmetric. Differently, we found both phase-

independent and phase-dependent similarities are major factors of detection accuracy
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in natural backgrounds.

As we applied the normalized template matching observer [17, 79] to our stim-

uli, we found that it predicts symmetric thresholds as a function of phase-dependent

similarity, reaching the minimum when the target and background are orthogonal in

phase. This prediction stays the same independent of the level of phase independent

similarity. Surprisingly, when we incorporated the intrinsic position uncertainty in

the HVS into the template matching observer, it predicts an asymmetric pattern of

thresholds similar to that of the human observers. The uncertainty level was mea-

sured directly for the same human observers in a separate position-discrimination

task for the same target in a gray background with the same diameter as the natural

background in the detection task.

Overall, we concluded intrinsic position uncertainty (and the extrinsic posi-

tion uncertainty in [127]) provide a plausible explanation of the asymmetric masking

reported in both studies.

3.2 Measurement of detectability with varying similarities

All experimental procedures in this section were approved by the University

of Texas Institutional Review Board (IRB). Informed consent was obtained from all

participants. The study included three male participants, aged 20–25. They all had

normal or corrected-to-normal acuity. In a trial, the observer’s head was stabilized

with a chin and head rest.

The stimuli in the experiments were generated with MATLAB 2022a and the

Psychophysics Toolbox [101, 102]. The stimuli were displayed with a resolution of

120 pixels per visual degree on a well calibrated Sony GDM-FW900 cathode-ray-tube
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(CRT) monitor. The monitor had a display size of 1920 x 1200 pixels, a refresh rate

of 85 Hz, and a bit depth of 8. Prior to display on the screen, the stimuli were clipped

to the upper 99th percentile gray level, gamma-compressed, and quantized to gray

levels in the range of 0-255. The mean luminance of circular background patches on

the screen was always 50 cd/m2, which was equal to the luminance outside the patch.

We measured the psychometric functions with respect to the target amplitude

a in a simple yes/no detection task. The target amplitude was defined to be the

squared root of the sum of the squared pixel values. For plotting convenience, we

divided the actual RMS amplitude by 97.8. Besides the definition in Section 1.3, our

detection task here has only a single, deterministic target, and only a single possible

location (the center of display) that the target can be present at. The target was a

horizontal 4-cpd raised-cosine windowed sine wave target in cosine phase, added to

the background. It had a diameter of 96 pixels, or 0.8 visual degrees. The background

had a diameter of 516 pixels, or 4.3 visual degrees.

The natural backgrounds in the experiment were from a large database of

calibrated, high-resolution (4284 × 2844), 14-bit per color images, as mentioned in

[17]. They were then converted to grayscale and binned along the dimensions of

luminance, RMS contrast, and amplitude-spectrum similarity. The resulting joint

histograms contained 1000 bins, with 10 along each dimension. It is important to

point out that those statistics were computed only from backgrounds cropped into

the size of the target in this experiment, though extended regions around the patches

were also displayed in a trial.

Mathematically, amplitude-spectrum similarity
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SA =
AT

||AT ||
· AD

||AD||
(3.1)

where AT is the amplitude spectrum matrix of the target or the template, AD

is the amplitude spectrum matrix of the mean-subtracted background, and || · || is

the Euclidean norm.

To closely emulate the real-world scenario of visual search and separate the ef-

fect of phase similarity from other factors, we first chose the two bins with fixed levels

of luminance and contrast (the second-highest levels for both) and two different lev-

els of amplitude-spectrum similarity (the second-lowest level and the second-highest

level), with the average SA = 0.18 and 0.38, respectively. Then we randomly sampled

natural backgrounds from only one of the bins for all trials in a session (i.e., conditions

were blocked). Similarity in phase was not blocked, but only analyzed after the ex-

periment was completed. In a daily search, the target most likely has a random phase

relationship with the background across many fixations, instead of always being in

or out of phase. The luminance and contrast levels were picked as typical conditions

in natural environments. The levels of amplitude-spectrum similarity were picked to

allow possibly noticeable effect size while still having thousands of image patches to

sample from.

Per amplitude-spectrum similarity level and per participant, there were 2000

trials (10 target amplitudes × 50 trials × 4 sessions). Target amplitude was also

blocked, the same as in the detection task in the last chapter.

On each trial, a central fixation cue was given for 750 ms and then extinguished

for 250 ms (Figure 3.1). Then a stimulus was displayed for 250 ms, that is the typical

fixation duration during natural overt search [50, 51]. The observer was asked to
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focus at the center of the stimulus display and make no saccade. The presentation

duration was short enough to allow only one central fixation before response. The

target was present for half of the trials, and if present, always at the very center of

the display. A natural background was randomly sampled without replacement from

a certain level of the amplitude-spectrum similarity. Each human observer was asked

to press the left arrow key to respond “target-absent”, and the right arrow key to

respond “target-present”. Auditory feedback was given at the end of each trial on

whether the response was correct.

Figure 3.1: Timeline of a trial for our detection task in natural images.

The similarity in phase structure between the target and the background is

defined as image similarity conditioned on the amplitude-spectrum similarity. Image

similarity is simply the cosine similarity, or normalized dot product in spatial domain:

SI =
T

||T ||
· D

||D||
(3.2)
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In the following discussions, we may use SI|A instead of SI to represent phase

similarity and emphasize the fact that the natural backgrounds were first blocked in

amplitude-spectrum similarity, though there is no difference in the computation of its

value.

During analysis, for each level of amplitude-spectrum similarity, the back-

grounds were sorted into five bins (quintiles) of image similarity. For the high

amplitude-spectrum similarity condition, the levels of image similarity had average

values of -0.15, -0.06, 0.00, 0.06, and 0.15. For the low amplitude-spectrum similarity

condition, the levels of image similarity had average values of -0.05, -0.02, 0.00, 0.02,

and 0.05.

Figure 3.2 shows examples of the natural stimuli from the two levels of amplitude-

spectrum similarity and the two extreme levels of image similarity (first and fifth qun-

tiles). As a crude visual examination without jumping into a conclusion, the target

seems to be harder to see when the amplitude-spectrum similarity is high and when

the image similarity is low given the same amplitude-spectrum similarity.

For each amplitude-spectrum similarity level and each target amplitude within

an image similarity quntile, the hit and correct rejection rates were converted to de-

tectability d′ and criterion γ with Equation 1.6 in the description of Signal Detection

Theory. Then d′ was used to calculate the generalized maximum proportion cor-

rect PC = Φ(d′/2). Finally, the amplitude threshold was defined as the maximum

likelihood estimate α̂ in a generalized cumulative Gaussian function:

PC(a|α, β) = Φ

[
1

2
(
a

α
)β
]

(3.3)

where α and β are the slope and shape parameters. The amplitude threshold
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Figure 3.2: Masking by amplitude-spectrum similarity and image similarity in natural
images.

corresponds to the target amplitude where d′ = 1.

3.3 Direct measurement of intrinsic position uncertainty

Intrinsic position uncertainty refers to the phenomenon that, even if a target is

always presented at exactly the same physical location on the display screen, and this

condition is perfectly understood by a human observer, the human observer will still

accept, intentionally or not, target-like features in (a small region of) the surround-

ing background [19–25], because the observer has and acknowledges the unavoidable

internal noise of knowing the exact target location. In other words, slightly displaced

“features” in the noise background that correspond to the target are considered as

evidence of the target.

We directly measured the intrinsic position uncertainty in two of our observers

(aged 20–25) with this experiment. They all had normal or corrected-to-normal acu-
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ity. In a trial, the observer’s head was stabilized with a chin and head rest. All

experimental procedures in this section were approved by the University of Texas In-

stitutional Review Board (IRB). Informed consent was obtained from all participants.

The target, the timeline of a trial, the size of the background, the hardware

and software specifics for image generation, the response and feedback methods were

identical to those in the detection experiment (Figure 3.3). However, the background

content was simply uniform gray with a thin black line marking the border. The

target was clearly visible with an RMS contrast of 4%. The mean luminance of

circular background patches was always 50 cd/m2, which was equal to the luminance

outside the patch on the screen. Human observers were asked to report whether the

target was shifted to the left or right of the center of the circular background region.

Figure 3.3: Timeline of a trial for our position discrimination task in gray background.

Psychometric functions were measured for 10 levels of location displacement

with 120 trials (30 trials × 4 sessions) per level. We considered two possible distri-

bution shapes for the intrinsic position uncertainty: two-dimensional Gaussian with

standard deviation σ, and two-dimensional uniform with radius ρ. We fitted them by

maximizing the likelihood to the psychometric functions. For details in the derivation
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of probabilities in the confusion matrix based on intrinsic position uncertainty, see

Appendix E.

The position uncertainty level in the gray background was used in the template

matching model. We assumed that the uncertainty level would serve as the lower

bound of the total position uncertainty in natural images.

3.4 Phase similarity effects on human and model observers

The psychometric data and fitting for the human observers in the detection

task are shown in Figure 3.4. As can be seen for all observers, the bias-corrected

(maximum) proportion correct gradually increases as the target amplitude increases.

Figure 3.4: Psychometric data and fitting of the detection task. Left axis: estimated
bias-corrected maximum proportion correct; right axis: criterion in the unit of the
standard deviation in SDT. Top row: low amplitude-spectrum similarity; bottom row:
high amplitude-spectrum similarity. Each column represents one of the quintiles.

Detection thresholds in decibels were plotted as a function of image similar-
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ity for the two levels of amplitude-spectrum similarity (Figure 3.5a). For all three

observers, thresholds declined monotonically with image similarity and were higher

when the amplitude-spectrum similarity was higher. In other words, the target was

more detectable when the target and the background were less similar in amplitude

spectrum, and more similar in phase structure.

(a) (b) (c)

Figure 3.5: Amplitude thresholds of human (a) and model observers (b, c). (a)
Colored circles: individual observers. Black circles: the average observer. Error
bar: ±1 standard error across the observers. (b) Thresholds of the simple template
matching model (Equation 2.2). (c) Thresholds of the eye-filtered template matching
model (Equation 2.16).

However, Figure 3.5b shows that the simple template matching (TM) observer

(Equation 2.2) has amplitude thresholds that do not decline monotonically with image

similarity, but form symmetrical U-shaped functions with the minimum at an image

similarity of 0.0, or when the target and the background are approximately orthogonal

in phase. Clearly, the detection pattern of the HVS with regard to similarity in phase

is very different from that of a simple template matching model, despite its past

success in predicting the effects of luminance, RMS contrast, and amplitude-spectrum

similarity [17].

The U-shaped thresholds with image similarity are intuitive because the tem-

plate response to the target stays the same independent of the orthogonality of the
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background, while the template response to the background is weaker and hence less

variable when the background is more orthogonal to the target. When the target and

the background are orthogonal in phase, signal-to-noise ratio and d′ (Equation 1.5)

are the highest and the threshold is the lowest.

Furthermore, as shown in Figure 3.5c, we still found a U-shaped function after

incorporating the eye filter mentioned in Equation 2.15 with the same parameter

values. The eye filter was used to model the foveal amplitude transfer function (ATF)

of the early visual system, fitted to the contrast sensitivity function in the ModelFest

Dataset [106], and normalized to a peak of 1.0. The shallower U-shape indicates

eye-filtering causes target detectability to vary as a function of similarity in phase.

3.5 Interaction between phase similarity and position uncer-
tainty

In this section, I will present the results of the interactive effect of phase

similarity and intrinsic position uncertainty (IPU). Intrinsic uncertainty refers to the

phenomenon that, even if a target is always presented at exactly the same physical

location on the display screen, and this condition is understood by a human observer,

the human observer will still accept, intentionally or not, target-like features in (a

small region of) the surrounding background [19–25], because the observer has and

acknowledges the unavoidable internal noise of the exact target location. In other

words, slightly displaced “features” in the noise background are considered as evidence

of the target.

Position uncertainty often does not change the qualitative pattern of detection

thresholds in a model. For instance, the effect of amplitude-spectrum similarity on

detection thresholds still had the same pattern, given the intrinsic position uncertainty
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[128]. However, we discovered that a small amount of the intrinsic position uncertainty

significantly changed the effect of similarity in phase on detection thresholds.

We directly measured the position uncertainty of two of our observers with a

position discrimination task. Figure 3.6a shows the bias-corrected proportion correct

as a function of the amplitude of displacement from the center of the background.

As the displacement amplitude increased, the discrimination accuracy gradually in-

creased, while the criterion remained relatively constant.

(a)
(b) (c)

Figure 3.6: Measurement and effect of position uncertainty. (a) Psychometric data
and fitting of the position discrimination task. Solid circles: bias-corrected proportion
correct; open circles: criterion. (b) Thresholds of the max-UETM observer (Equation
3.4). (c) Thresholds of the sum-UETM observer (Equation 3.8).

The discrimination threshold, defined as the displacement amplitude when

d′ = 1.0, was approximately 2 arc min for both human observers. This is consistent

with previous measures under similar conditions (e.g., the “bullseye” thresholds re-

ported in [129]). Under the Gaussian assumption of the intrinsic position uncertainty

(Equations E.2, E.3), the standard deviation was 3.4 arc min. Under the uniform as-

sumption (Equations E.7, E.8), the radius was 6.5 arc min. The maximum likelihood

fits using the Gaussian and uniform distributions are almost equally good, so our data

in this position discrimination task do not distinguish between the two assumptions,
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or some intermediate assumptions, on the shape of the uncertainty distribution.

Now we implement this level of intrinsic position uncertainty on top of eye-

filtering to template matching, with a method different from the last chapter (Equa-

tion 2.22). We computed the response as

Ruer = max
x⃗∈U

[
ln pU(x⃗) +

a

σ2
e

De(x⃗) · Te

]
(3.4)

Te = F−1{E F{T}} (3.5)

Ne(x⃗) = F−1{E F{N(x⃗)}} (3.6)

De(x⃗) = Ne(x⃗)−Ne(x⃗) (3.7)

where U is the set of all considered uncertain locations (vectors starting from

the actual target location), x⃗ is a specific uncertain location, pU(x⃗) is the uncertainty

distribution, either Gaussian or uniform (using the estimated standard deviation or

radius parameter), a is the target amplitude, E is the eye filter, Ne is the average

luminance of the eye-filtered background, and σe is the standard deviation of the eye-

filtered template matching response (Equation 2.16). For the high and low amplitude-

spectrum similarity conditions, σe = 250.2 and 91.5, respectively. I abbreviate this

model as the max-UETM observer.

Similarly, we have the sum-UETM observer:

Ruer = ln
∑
x⃗∈U

{
pU(x⃗) exp[

a

σ2
e

De(x⃗) · Te]

}
(3.8)

The reason we express the uncertainty distribution with a log-prior is that de-

tection under position uncertainty is effectively a visual search task without indicating

the target “location” (Equation 1.25). We chose the max and sum rules because the
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max rule is the maximum a posteriori search strategy when the task is to indicate

either the target location or that the target is absent (Equation 1.20; see also [59]),

and the sum rule is the maximum a posterior search strategy when the task is to

indicate whether the target is present or absent (Equation 1.22).

Figures 3.6b and 3.6c show the performance of the max-UETM and sum-

UETM observers, assuming Gaussian and uniform uncertainty distributions with pa-

rameters estimated from the position discrimination experiment. Both predictions

are similar to human performance in Figure 3.5a. Indeed, the sum-UETM response

is dominated by the location giving the max-UETM response. An intrinsic position

uncertainty with the discrimination threshold of just 2 arc min is able to produce a

highly asymmetric effect of image similarity like in human detection thresholds.

As expected, the UETM observers have thresholds substantially higher than

those of the ETM observer, on average by about 20 dB, or an order of magnitude.

The difference in their thresholds is least when the target and the background are

most in phase (with the highest image similarity). The predicted average difference in

thresholds between the low and high amplitude-spectrum similarity conditions remain

about the same.

Now I explain this asymmetric effect intuitively with attraction and repulsion

with Figure 3.7. When the background is in phase with the absent target, the location

producing the max-UETM response or dominating the sum-UETM response tends to

be attracted to the actual target location. When the background is out of phase with

the absent target, the location producing the max-UETM response or dominating the

sum-UETM response tends to be repulsed from the actual target location. Attraction

mitigates the threshold increase due to position uncertainty, and repulsion aggravates

the threshold increase due to position uncertainty. Those effects override the original
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U-shaped function due to the reduced variance of orthogonal backgrounds.

Figure 3.7: Attraction and repulsion of similarity in phase to intrinsic position uncer-
tainty (IPU). Black circles illustrate the background. Green color indicates the target
is in phase with the background. Red color indicates the target is out of phase with
the background.

Furthermore, we noticed that in Figure 3.4, for the first image similarity bin

where target and background were most out of phase, the bias-corrected (maximum)

proportion correct was systematically below chance (a negative detectability) when

target amplitude was low. That is because the stimulus was still out of phase with

the template when the target was added to the background. The uncertain tem-

plate response, no matter by the max or sum rule, favors locations that turn the

original out-of-phase structure to be more in phase with the template. Therefore,

the response under position uncertainty becomes higher when the target is absent,

and lower when the target is present, opposite to the expectation of the classical

signal detection model. In other words, because of the interaction between the phase

similarity structure and position uncertainty, the ideal observer would reverse the

inequality direction in the decision rule, responding target-present when the template

of the target is less matched. With image similarity unblocked, it is highly unlikely
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for the human observer to recognize such a situation and reverse the decision rule on

a trial-by-trial basis to perform above chance.

As we mentioned in the introduction section of this chapter, the partial mask-

ing factor ||Tp|| is also an impactful factor [79, 80] to the detection thresholds:

at ∝ L · C · SA/||Tp||. However, we have not controlled its level directly. Could

the asymmetric detection pattern we observed actually be the result of asymmetry in

the partial masking factor? Figure 3.8 shows that is not the case. In all cases, partial

masking factor has very similar distributions, and the only potential systematic effect

is its slightly higher value in high amplitude-spectrum similarity condition, which

would lower the thresholds uniformly in that condition by only 10%, or 0.9 dB.

Figure 3.8: Partial masking factor of the natural images by amplitude-spectrum sim-
ilarity and image similarity levels. Means and 67% confidence intervals were marked.
The analyzed natural images here are the exact same images used in the experiment.

The absolute value of the cosine similarity between two real-valued vectors

u⃗, v⃗ equals to the magnitude of the cosine similarity between their complex-valued,
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Fourier-transformed vectors (termed Fourier cosine similarity), that is

|u⃗ · v⃗|
||u⃗|| · ||v⃗||

=
|F{u⃗} · F{v⃗|}|

||F{u⃗}|| · ||F{v⃗}||
(3.9)

Furthermore, amplitude-spectrum similarity is no less than the Fourier cosine

similarity, because the Fourier cosine similarity is maximized when the phases are

totally aligned.

Au⃗ · Av⃗

||Au⃗|| · ||Av⃗||
≥ |F{u⃗} · F{v⃗|}|

||F{u⃗}|| · ||F{v⃗}||
(3.10)

As the calculation of similarities for two-dimensional matrices is no different

from one-dimensional vectors, we obtain that Sa ≥ |Si|. Amplitude-spectrum simi-

larity is the upper bound of the absolute value of image similarity for any target and

background.

Therefore, given a fixed level of amplitude-spectrum similarity, we hypothesize

a benefit for the HVS to normalize image similarity based on its range of value. We

plotted the relationship between amplitude-spectrum and image similarity in varying

targets and backgrounds (Figure 3.9). It is quite common, such as for the sine wave

target and the 1/f noise background, that the quntiles of image similarity expand out

as amplitude-spectrum similarity level increases. If image similarity is normalized and

expressed as the exact quantiles (gray dots), then the amplitude-spectrum similarity

and the normalized image similarity dimensions are orthogonalized.

When the detection thresholds of the human observers (Figure 3.5a) are plot-

ted as a function of the normalized image similarity, as shown in Figure 3.10, threshold

curves become fairly parallel, indicating a separability between the amplitude simi-

larity and normalized image similarity for predicting detection performance.
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Figure 3.9: Relationship between amplitude-spectrum and image similarity. Target:
a raised-cosine blob, and raised-cosine-windowed sine, triangle, square, and rectangle
waves. The rectangular wave has a duty cycle of 10% (Figure 2.3). Background:
white, 1/f , 1/f 1.5, band-pass, and band-stop noises (see Figure 2.1 for examples).
The total number of image patches per condition is 100,000. Those patches were first
binned into three amplitude-spectrum similarity levels, and then binned per Sa level
into five image similarity levels. The max-normalized image similarity is the image
similarity normalized by the maximum absolute image similarity across all 15 bins.
Black dots: median values of each bin; gray dots: quntiles from [-1,1].

In addition to the aforementioned model observers, we also considered ver-

sions where the template responses are a mixture of simple and complex template

responses. A complex template combines the response of the simple template (T )

with the response of the same simple template with its phase spectrum shifted by 90

degrees (T⊥), that is
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Figure 3.10: Amplitude thresholds of the human observers as a function of the quan-
tiles of the image similarity. Colored circles: individual observers. Black circles: the
average observer. Error bar: ±1 standard error across the observers.

Rc =
√
(D · T )2 + (D · T⊥)2 (3.11)

where D is the mean-subtracted stimulus. As the template in our experiment

is a cosine phase wavelet, the phase-shifted template will be in sine phase. Therefore,

Equation 3.11 gives the response of a classical complex cell response with orientation

and spatial frequency tuning matched to the target [130].

To capture the population pooling from both the simple and complex cells of

the HVS for visual detection, mixture models linearly combines simple and complex

template responses with a weighting parameter α ranging from 0 to 1. For example,

the mixed template matching (MTM) and the mixed, eye-filtered template matching

(METM) observers are
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Rm = αD · T + (1− α)
√

(D · T )2 + (D · T⊥)2 (3.12)

Rme = αDe · T + (1− α)
√

(De · T )2 + (De · T⊥e)2 (3.13)

where Te is the eye-filtered template, and Te⊥ is the eye-filtered, phase-shifted

template.

The mixed, uncertain, eye-filtered template matching (MUETM) observer is

Rmue = αRuer + (1− α)
√
R2

uer +R′2
uer (3.14)

R′
uer = max

x⃗∈U

[
ln pU(x⃗) +

a

σ2
e

De(x⃗) · Te⊥

]
(max rule) (3.15)

R′
uer = ln

∑
x⃗∈U

{
pU(x⃗) exp[

a

σ2
E

De(x⃗) · Te⊥]

}
(sum rule) (3.16)

We presented the effect of incorporating complex templates into model ob-

servers with Figure 3.11, both with and without position uncertainty. When there

are only complex template responses, detection thresholds are highly asymmetrical,

even without position uncertainty; simultaneously, including (uniform) position un-

certainty almost has no effect on the detection thresholds.

These seemingly puzzling results can be explained by the fact that a complex

template effectively sums energy over the template region independent of the spatial

phase, similar to applying the sum rule over the template region. Thus, applying

the sum or max rule on top of the complex template responses over the uncertainty

region may produce little additional effect.

If the stimulus presentations in different image similarity bins were blocked,

then in the low percentile trials, it might have been possible for the human observers
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Figure 3.11: Amplitude thresholds of simple-complex mixture template matching
models. A. Thresholds of the METM observer (Equation 3.13). Three cases are
plotted: only-simple (α = 1), only-complex (α = 0), and an even mix of simple-
complex (α = 0.5). The blue curve is a re-plot of Figure 3.5c. B. Thresholds of the
MUETM observer (Equation 3.14). The gray curve is a re-plot of the green curve in
A.

to learn that the image similarity is negative and detect the target as a reduction

in the template response. We simulated performance of the max-UETM and sum-

UETM observers that can flip the inequality direction of the decision rule for each

amplitude level whenever the distributions of template responses with target absence

and presence are reversed in location.

As can be seen in Figure 3.12a, when the image similarity is highly nega-

tive (which is more likely given high amplitude-spectrum similarity), as the target

amplitude increases from 0, the detectability first increases from 0 to a peak, then

decreases back to 0, and afterward increases without a limit. This interesting pattern

results from the fact that the target-present response distribution first shifts lower

than and away from the target-absent response distribution, and then shifts back to

and eventually cross over the target-absent distribution.

Figures 3.12b and 3.12c show the pattern of detection thresholds when the
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(a)

(b) (c)

Figure 3.12: Uncertain template observers under conditions with image similarity
and target amplitude also blocked (besides amplitude-spectrum similarity), in nat-
ural images. (a) Detectability as a function of target amplitude. (b) Thresholds of
the max-UETM observer (Equation 3.4). Here, the threshold is defined as the low-
est target amplitude that allows d’=1. (c) Thresholds of the sum-UETM observer
(Equation 3.8).

image similarity and target amplitude are also blocked. Compared to when they are

unblocked (Figures 3.6b and 3.6c), thresholds in this condition have a substantial

drop when the image similarity is highly negative, but still maintain the general

asymmetric phase effect in most conditions.
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3.6 Discussion

Previous studies [17, 79] have shown the major factors that affect human

visual detection in natural backgrounds include background luminance, background

RMS contrast, amplitude-spectrum similarity, and partial masking factor. Rideaux

et al. [127] investigated the effect of similarity in phase between derivative-of-Gaussian

targets and natural background in covert visual search, and found the targets were

more visible when aligned with the background in phase, but amplitude-spectrum

similarity showed little effect on search performance.

Here, we measured this phase effect using the cosine similarity between a

wavelet target and natural backgrounds, with fixed background luminance, contrast

and two levels of amplitude-spectrum similarity. We found that both amplitude-

spectrum similarity and image similarity are significant in predicting target detectabil-

ity in visual detection. Phase similarity is an important fifth dimension. Specifically,

a target is more detectable when it is less similar to the background in spectral am-

plitude, and more similar to the background in phase.

All unsophisticated template matching models (e.g., TM, ETM) failed to pre-

dict this phase-asymmetric pattern of the human observers, despite their previous

success for other feature dimensions [17, 128]. Though intrinsic position uncertainty

only scaled the thresholds mostly uniformly across varying levels of those dimen-

sions, it has a very different effect for similarity in phase. We directly measured

the small level of position uncertainty (2 arc min) through a position discrimination

task, and incorporated it into template matching models. Surprisingly, including

position uncertainty results in the asymmetry pattern along the (phase-dependent)

image similarity.
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Similarity in phase modulates the effect of intrinsic position uncertainty on

visual detection. When target and background are in phase, the uncertain template

response, no matter by sum or max rule, is attracted to the actual target location,

effectively reducing the level of position uncertainty; when target and background

are out of phase, the uncertain template response is repelled from the actual target

location, effectively increasing the level of position uncertainty.

We admit there are still some quantitative differences in detection thresholds

between the human observers and the uncertain template matching models. The

predicted asymmetric effect is about 16 dB, larger than the observed effect (6-7 dB).

We considered the complex templates (Figure 3.11) and incomplete templates (e.g.,

ignoring half of the pixels in the target), but the size of the asymmetric effect still

persists. We incorporated a reasonable level of internal noise and reduced the effect

size to about 10 dB. Thus, at this point, we only have a partially satisfactory expla-

nation for why the effects of image similarity in human visual detection are smaller

than predicted.

How the image similarity exactly interacts with other detection-relevant di-

mensions of natural images remains unknown. We have shown normalized image

similarity (Figure 3.10) seems to have an effect on detection performance separable

to amplitude-spectrum similarity. That was a promising first step. For further re-

search, natural images can be binned into all five dimensions and used as backgrounds

for the measurement of human detection thresholds.

Important biological factors were included in our template matching models,

such as the human contrast sensitivity function, intrinsic position uncertainty, and

normalization. Foveation was only acknowledged implicitly due to the nature of our

detection task. However, as is well known, and as we will show in Chapters 4 and 5,
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foveation needs to be incorporated in visual search tasks.

The variables that affect the level of intrinsic position uncertainty are diverse

and complex. The size and shape of the target compared to those of the background,

the direction of uncertainty, and the idiosyncrasy of a specific HVS, all contribute to

the level of intrinsic position uncertainty. Furthermore, intrinsic position uncertainty

increases rapidly with the retinal eccentricity [23]. An important direction for future

research is to develop a theory that predicts the vector fields of intrinsic position

uncertainty for arbitrary targets, backgrounds, and observers. In the meantime, it

can be directly measured and estimated from well-designed position-discrimination

tasks, paired with the main experiment, including but not limited to a visual detection

or search task.

In our visual detection task, simple and complex template matching models

perform equally well given the intrinsic position uncertainty (Figure 3.11). That

implies in cases where energy at irrelevant phases are to be discarded for best perfor-

mance, because of position uncertainty, it would still be beneficial to pool over simple

and complex cell responses for a larger sample size.

We name the second zero point in Figure 3.12a as the break-even point, and

the local peak before the break-even point as the early ceiling point. We noticed that

if the model did not flip the direction of the decision rule before the break-even point,

all d′ values before that point would have been mirrored along the amplitude axis

and become negative, similar to what we observed in the experiment (Figure 3.4).

The amplitude values at both points depend on the similarity in shape (e.g. spatial

frequency and phase) between the target and the background, the contrast of the

background, and the level of position uncertainty. For future research on the effect

of similarity in phase on human visual detection, one could design straightforward
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psychophysics experiments to explore the existence (and quantitative relationships)

of those two points.
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Chapter 4: Covert Search

Abstract

Cued detection and covert search tasks of human observers were

measured for a wavelet target in white noise backgrounds. The de-

tectability map measured in the detection task was used to pre-

dict the optimal possible performance in the search task, assuming

statistical independence of responses from the potential target lo-

cations. Surprisingly, we found the average human observer and

all individual observers had search accuracy slighly better than the

Bayes-optimal searcher, despite humans’ substantial loss of sensitiv-

ity in the fovea, and the implausibility of neurally replicating the

complex Bayes-optimal search rule. We show three factors that can

quantitatively explain these seemingly paradoxical results: (1) Many

extremely simple and fixed heuristic decision rules are sufficient to

obtain near-optimal search performance. (2) Foveal neglect primar-

ily affects only the central target location out of many potential lo-

cations. (3) Spatially correlated noise lowers detection performance

but has little or no impact to search performance. These findings

have broad implications for understanding visual search tasks and

other identification tasks in humans and other animals.

4.1 Introduction

We have been focusing on visual detection in the last two chapters. As laid out

in Section 1.2, human behavior in the single-location detection is a sensible building
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block for the much more complex search behavior. In this chapter, I will present the

bridging from detection to covert search (search without saccades). We discovered

the surprisingly supraoptimal search performance of human observers. Much content

in this chapter is included in this pre-print article [131].

In Section 1.3, I defined visual search as the aim and activity of reducing

uncertainty about the location of a physical object or the distribution of particular

information based on the sensing and perceiving of light within the field of vision.

The search task here is specified in the following ways. First, the human observers

performed no saccades during the search. Second, potential target locations were well

separated by at least 1.6 visual degrees. Third, the observers were asked to respond

whether the target was present or absent, and the location of the target if present.

Carefully controlled studies of covert search typically present the stimuli briefly

to prevent saccades and with the potential target locations placed at a fixed distance

from the fixation location to keep the target visibility at different locations approx-

imately constant [75, 78, 132–134]. In some studies, the task is simply to indicate

whether the target is present or absent. In other studies, the target is always present,

and the task is to indicate the location of the target. The target is either a single

shape, a limited set of directly defined shapes, or a typically unlimited set of shapes

based on a semantic category. The background is made of distracting objects, or

stochastic noises.

The human visual system (HVS) has foveated spatial resolution, high in the

direction of gaze and rapidly declining into the periphery. Thus, this biological factor

needs to be directly incorporated into any representative theory and modeling of

human visual detection and search.

When all the potential target locations are at a fixed retinal eccentricity and
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the task is to report whether a single target is present or absent, there is a wide range

of conditions where human search accuracy is consistent with the optimal decision

rule, given statistical independence at those locations [75, 76, 78, 132]. However, the

design choice of a fixed eccentricity display is not representative of natural search,

where potential target locations are more uniformly distributed across the visual field.

Also, a target’s visibility slightly varies around a circle at a fixed retinal eccentricity

[55–57, 77].

Therefore, we designed well-separated target locations with varying eccentric-

ities in white noise background. Then we measured detectability of a target at each

potential target location when the location is known, and apply the detectability

map through the Bayesian statistical decision theory in Section 1.9 to predict quan-

titatively the best possible performance in the search task when the location of the

target is unknown, assuming the responses are statistically independent at the poten-

tial target locations. We also carefully interleaved the detection and search sessions

to minimize differences in practice effects for the two tasks. The predictions from

this strictly controlled paradigm provide the normative benchmark for evaluating the

effects of various potential stimulus and neural factors on search performance. For

examples, hypothesized factors that cause a Bayesian observer’s performance to fall

below the measured human performance can be confidently rejected.

The results are surprising. First, all four human observers performed the

search task slightly better than the prediction of the Bayes-optimal search rule, given

the measured detectability when the target locations were cued and the assumption

of statistical independence of responses at the different locations. Second, the Bayes-

optimal searcher takes into account the prior probability of the target being present

at each potential location (with a prior map), as well as the detectability of the target
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at each potential target location (with a d′ map). It seems implausible that during the

course of the experiment, the observers could precisely learn the prior map and their

own d′ map, and then optimally apply this information to make responses. Third,

in the search task, the four observers showed a substantial loss of sensitivity in the

fovea, a phenomenon coined ”foveal neglect” in a recent study of covert search in

continuous noise background [59]. Specifically, it was shown that the reduction in

accuracy in the fovea is not due to bias in estimating the prior probability, but to a

reduction in detectability in the fovea. The reduction of foveal d′ was explained by

the hypothesis that there is a limited total attentional gain resource and that this

gain is distributed efficiently across neurons in V1.

We show that three factors can explain the seemingly paradoxical results.

First, we discovered it is not necessary to know precisely the d′ and target-present prior

maps. Extremely crude and fixed heuristic decision rules, in combination with local

normalization (e.g., luminance and contrast gain control), are surprisingly sufficient

to obtain near-optimal search performance. Second, foveal neglect primarily affects

only the central target location. Third, spatially correlated noise corresponding to

about 45% of the total noise variance is sufficient to predict the supraoptimal search

performance, even with the foveal neglect and the heuristic decision rules.

These findings have several important implications. The near-optimality of

highly heuristic decision rules is a promising sign to greatly simplify the development

of a general theory of visual search, without and with saccades. For example, even

though under natural conditions the actual d′ map changes with every fixation during

visual search, the central decision mechanisms can assume a nearly fixed simple d′

map and still approach optimal performance closely. These simple decision mecha-

nisms would not die out throughout natural selection. Furthermore, the near-optimal
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search performance allows the possibility of individual differences in decision rules

with diverse heuristics. Also, the highly controlled experimental conditions of the

current study provide even stronger evidence for the phenomenon of foveal neglect

compared to Walshe and Geisler [59]. Finally, our results reveal a new potential effect

of correlated neural noise for human visual search behavior.

4.2 Methodology and experiments

All experimental procedures in this section were approved by the University

of Texas Institutional Review Board (IRB). Informed consent was obtained from all

participants. The study included three male participants, aged 19–26. They all had

normal or corrected-to-normal acuity. In a trial, the observer’s head was stabilized

with a chin and head rest.

The stimuli in the experiments were generated with MATLAB 2023a and the

Psychophysics Toolbox [101, 102]. The stimuli were displayed with a resolution of 30

mega-pixels per visual degree (with each mega-pixel occupying a 2 x 2 screen pixel

region) on a well calibrated Sony GDM-FW900 cathode-ray-tube (CRT) monitor.

The monitor had a display size of 1920 x 1200 pixels, a refresh rate of 85 Hz, and a

bit depth of 8. Prior to display on the screen, the stimuli were clipped to the upper

99th percentile gray level, gamma-compressed, and quantized to gray levels in the

range of 0-255.

The mean luminance of circular background patches was always 60 cd/m2,

which was equal to the luminance outside the patch on the screen. Circular cues were

used to indicate possible target locations. Light cues had a luminance of 66 cd/m2,

and dark cues had a luminance of 51 cd/m2.

121



The overall background had a diameter of 1200 pixels, or 20 visual degrees.

Backgrounds centered on each potential target location were statistically independent

samples of high-contrast Gaussian noise. Each patch had a root-mean-square (RMS)

contrast of 20%. For the 19-location configuration, the background had a diameter

of 3.5 visual degrees, and the potential locations were at the center of background

patches, separated by 4 visual degrees. The target was a vertical 6-cpd raised-cosine

windowed sine wave target in cosine phase, adding to the background. It had a

diameter of 48 pixels, or 0.8 visual degrees, and a single, fixed amplitude level per

human observer, where the bias-corrected detection accuracy at the center of the

display is approximately 95%, or a d′ of 4.5.

On each trial, location cues were given for 750 ms and then extinguished for

250 ms (Figure 4.1). For the detection task, the only possible target location was cued

with a dark cue, while other locations were cued with light cues. Then a stimulus was

displayed for 250 ms, that is the typical fixation duration during natural overt search

[50, 51]. The observers were asked to focus at the center of the stimulus display

and make no saccade. The presentation duration was short enough to allow only

one central fixation before response. The target was present for half of the trials,

and if present, always at the very center of one of the background patches. For

the detection task, the only possible target location was indicated before stimulus

presentation, and the observers were asked to right-click to respond “target-absent”,

and left-click to respond “target-present”. For the search task, the observers were

asked to right-click anywhere on the screen to respond “target-absent”, and to left-

click within a background patch to respond “target-present” at that corresponding

location. In both cases, the observers had up to 3000 ms to respond, with the cueing

display presented. Auditory feedback was given at the end of each trial on whether
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the response was correct.

Figure 4.1: Timeline of a cued detection or search trial. For the cued detection trial,
one of the light cues was replaced by a dark cue to indicate the only possible target
location.

We ran preliminary search trials with highly visible targets and found that the

human observers made no errors in clicking on the target locations, indicating that

their search performance was not limited by spatial memory and motor control. Fur-

thermore, we used a reverse counterbalancing design, where the observers completed

the detection task and all search tasks (19, 7, 61, and 91 locations) in two opposite

orders.

In the following section, I will compare human search performance with that

of the Bayes-optimal and heuristic searchers. The metrics for comparison, including

overall accuracy, correct rejection, hit and miss rates at each location, were calculated

based on simulated responses. Nevertheless, here I list the analytic expressions of

those metrics given the derivations in Appendix C.
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Bayes-optimal searcher

For the Bayes-optimal searcher (Equation 4.19), the hit rate at location y is

p(x̂ = y|y) =
∞∫

−(
lpy

d′y
+

d′y
2
)

ϕ(z)
∏
y′ ̸=y

Φ(qh(y, y
′, z))dz (4.1)

qh(y, y
′, z) =

1

d′y′

[
ln

py
py′

+ d′yz +
1

2
(d′2y + d′2y′)

]
(4.2)

The miss rate at location y is

p(x̂ = 0|y) = Φ(−
d′y
2

− lpy
d′y

)
∏
y′ ̸=y

Φ(
d′y′

2
− lpy′

d′y′
) (4.3)

The false alarm rate to location y is

p(x̂ = y|0) =
∞∫

d′y
2
− lpy

d′y

ϕ(z)
∏
y′ ̸=y

Φ(qfa(y, y
′, z))dz (4.4)

qfa(y, y
′, z) =

1

d′y′

[
ln

py
py′

+ d′yz +
1

2
(d′2y′ − d′2y )

]
(4.5)

The false hit rate from location y to location y′ is

∀y′ ̸= y, p(x̂ = y′|y) =
∞∫

d′
y′
2

−
lpy′
d′
y′

ϕ(z)Φ(qfh1(y, y
′, z))

∏
y′′ ̸=y,y′

Φ(qfh2(y
′, y′′, z))dz (4.6)

qfh1(y, y
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1
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[
ln

py′

py
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2
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]
(4.7)

qfh2(y
′, y′′, z) =

1

d′y′′

[
ln

py′

py′′
+ d′y′z +

1

2
(d′2y′′ − d′2y′)

]
(4.8)
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The correct rejection rate is

p(x̂ = 0|0) =
∏
y

Φ(
d′y
2

− lpy
d′y

) (4.9)

A heuristic searcher

For the heuristic searcher given by Equation 4.21, The hit rate at location y is

p(x̂ = y|y) =
∞∫

−(
lpy

d̂′y
+

d̂′y
2
)

ϕ(z)
∏
y′ ̸=y

Φ(qh(y, y
′, z))dz (4.10)
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]
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The miss rate at location y is

p(x̂ = 0|y) = Φ(
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2

− d′y −
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d̂′y
)
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2
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The false alarm rate to location y is

p(x̂ = y|0) =
∞∫

d̂′y
2
− lpy

d̂′y

ϕ(z)
∏
y′ ̸=y

Φ(qfa(y, y
′, z))dz (4.13)
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1

d̂′y′

[
ln
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1

2
(d̂′2y′ − d̂′2y )

]
(4.14)

The false hit rate from location y to location y′ is
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∀y′ ̸= y, p(x̂ = y′|y) =
∞∫

d̂′
y′
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d̂′
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The correct rejection rate is

p(x̂ = 0|0) =
∏
y

Φ(
d̂′y
2

− lpy

d̂′y
) (4.18)

4.3 Comparison of human and model observers in visual search

The target detectability for the average human observer is shown in Figure

4.2a. The average d′ across all locations is 2.17, and the overall proportion correct

is 84.2%. While there are some individual differences in these maps across the four

observers, they show the same qualitative pattern: highest detectability in the fovea,

intermediate at the six locations nearest the fovea, and poorest in the remaining

12 locations, with relatively lower detectability in the upper and lower visual fields

(Figure 4.3, first column). This qualitative pattern is consistent with previous studies

[55–57, 77].

The average detectability in the covert search task is shown in Figure 4.2b.

Here, the detectability was computed from the hit rate at each target location and

the overall correct rejection rate. The average d′ across all locations is 2.17, and

the overall proportion correct is 69.8%, which is considerably lower than that in the
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(a) (b)

(c) (d)

Figure 4.2: Detectability map in the detection and search tasks. (a) Average human
d′ map in the detection task. (b) Average human d′ map in the search task. (c) The d′

map of the Bayes-optimal searcher given the average human d′ map in the detection
task. (d) The d′ map of the best-fit heuristic searcher given the average human d′

map in the detection task, with correlated noise and foveal neglect. Error bars are
bootstrapped 95% confidence intervals.

cued detection task. This pattern is seen in all four observers (Table 4.1). Although

there is a falloff in d′ with eccentricity, the d′ values within the central 7 locations are

much more similar than those in the detection task. This pattern remains true for
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individual observers (Figure 4.3, second column).

𝑑′ 𝑑′ 𝑑′

𝑑′ 𝑑′ 𝑑′

𝑑′ 𝑑′ 𝑑′

𝑑′ 𝑑′ 𝑑′

Figure 4.3: Detectability map for four individual observers in the detection and search
tasks. Rows 1-4 corresponds to individual observer P1-P4. First column: d′ map in
the detection task; second column: d′ map in the search task; third column: d′ map
of the Bayes-optimal searcher given the individual d′ map in the detection task. Error
bars are bootstrapped 95% confidence intervals.

The gray bars in Figure 4.4 show the pattern of correct responses and errors

across retinal locations averaged over all four human observers. Note that the false
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hit rate is the proportion of trials where the observer reported a location different

from the target location that was in the region of interest.

(a) (b)

(c) (d)

Figure 4.4: Correct responses and errors in the (19-location) search task by retinal
eccentricity. (a) Histogram of hits, misses, false alarms (FA) and false hits (FH)
in the central location, for the average observer (gray), the Bayes-optimal searcher
given the d′ map of the average observer in detection (orange), the best-fit heuristic
observer given an assumed d′ map that falls off, the average human d′ map in the
detection task, correlated noise and foveal neglect (blue), and the best-fit heuristic
observer given a flat assumed d′ map, the average human d′ map in the detection
task, correlated noise and foveal neglect (dark green). (b) Histogram of the surround
six locations. (c) Histogram of the outer 12 locations. (d) Histogram for all locations.
The correct rejection rate and overall accuracy are also included. (Number of trials
N=6800. Error bars are bootstrapped 95% confidence intervals. Fall-off heuristic:
log-likelihood = -11758, AIC = 23529, BIC = 23570. The flat heuristic is worse:
log-likelihood = -11787, AIC = 23584, BIC = 23618. The Bayes-optimal searcher is
the worst: log-likelihood = -12039, AIC = BIC = 24078. The fall-off model is e274.5

times as probable as the Bayes-optimal searcher.)
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To understand the relationship between the performance in the detection and

covert search tasks, we simulated the behavior of Bayes-optimal covert searchers that

use the Bayes maximum a posteriori decision rule (follow Section 1.9 for its derivation)

x̂ = arg max
x∈X

[ln px + d′x(R
′
x − d′x/2)] (4.19)

where X is the target location set that also includes the target-absent “loca-

tion”, x is a potential target location, x̂ is the estimated target location, px is the

prior probability that the target is at location x, d′x is the detectability of the target

at location x (that we measured in the cued detection task), R′
x is the normalized

response on that trial at location x. Recall that we have directly measured d′x in the

cued detection task.

Figure 4.2c and the orange bars in Figure 4.4 show covert search performance

using the optimal decision rule, given the measured d′ map in Figure 4.2a. The

uniform target-present prior probability was used in the experiment, and statistical

independence of responses was assumed from potential target locations. This statis-

tical independence is plausible because the targets were small, the potential target

locations were well separated, and the random noise backgrounds were statistically

independent. While there is some general qualitative agreement between the Bayes-

optimal searcher and the average human searcher, several puzzling differences emerge.

First, the overall accuracy of the average human observer is slightly higher

than that predicted by the optimal decision rule (Figure 4.4d). This is also true for

the individual human observers and for different numbers of potential target locations

(Table 4.1).

Second, although the overall accuracy of the human observers is higher than

130



the prediction of the Bayes-optimal decision rule, their performance is suboptimal at

the central location (Figure 4.4a; also compare Figures 4.2b and 4.2c). This result

remains true for the four individual observers (Figure 4.3, second and third columns),

which confirms the foveal neglect phenomenon in a recent study of covert search in

continuous noise background [59]. In principle, foveal neglect is expected to guarantee

that human searches worse than the Bayes-optimal searcher.

Finally, it is implausible that human observers implement calculations exactly

equivalent to the Bayes optimal decision rule. The optimal decision rule requires

weighting the response at each potential target location by the detectability of the

target at that location and adding the log prior probability of the target appearing

at that location (Equation 4.19). Learning all 19 detectability-prior pairs in the

course of the experiment seems unlikely. Worst yet, under natural conditions the

d′ map is different on every fixation, even for the same target, because the masking

properties of the background are different on every fixation. Also, the prior probability

map varies depending on the scene context. For the optimal decision rule to be

implemented under natural conditions, the HVS would need sophisticated neural

mechanisms to estimate in parallel, during each fixation, the d′ map over the visual

field for any desired target, and the prior map from the current scene context. If the

human observers were indeed using heuristic decision rules, how could they exceed

the performance predicted by the optimal decision rule?

We argue there are three factors that together could explain the results. First,

a wide range of extremely simple heuristic decision rules can achieve near-optimal

overall search performance. Second, correlated neural noise causes the measured d′

values in the detection task to be an underestimate of the effective d′ values in the

search task. Third, foveal neglect primarily affects only the central location of out of
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the 19 location.

We compared performance of the Bayes-optimal searcher and heuristic searchers

for a wide range of possible d′ maps. We constructed each d′ map as a function of

eccentricity e (distance from the fovea in degrees of visual angle), with a peak value

parameter d′max and a half-fall eccentricity parameter e2, so that

d′(e) =
d′maxe2
e+ e2

(4.20)

For example, the human d′ map in the detection task (Figure 4.2a) is best fit

with a d′max of 4.69 and an e2 of 4.68 visual degrees. In Figure 4.5 we considered 25

conditions of the actual d′ maps (or the baseline d′ maps for Figure 4.5f), with d′max

taking the values of 3.0, 4.5, 6.0, 7.5, 9.0 and e2 taking the values of 1, 3, 5, 7, and 9.

The range of e2 approximately matches the falloff rates in detectability for wavelet

targets, from about 1 to 16 cycles per visual degree [135, 136], covering most values

of spatial frequencies under the human contrast sensitivity function. Generally, fine

targets have small values of e2, and coarse targets have large values of e2.

As shown in Figures 4.5d and 4.5e, the overall search accuracy of the Bayes-

optimal searcher increases rapidly as either e2 or d′max increases, when the target is

present in half of the trials or always present. That is expected because the actual d′

map is holistically higher when either parameter is higher.

A heuristic searcher is any model that does not use the same decision process

as the Bayes-optimal searcher. For now, we consider a family of models with heuristic

d′ map only, that is

x̂ = arg max
x∈X

[
ln px + d̂′x(R

′
x − d̂′x/2)

]
(4.21)

132



(a) (b)
(c)

(d) (e) (f)

Figure 4.5: Optimal and heuristic searchers. (a) Actual d′ maps with a d′max of 6.0
and a range of e2, in colored curves. The best-fit (across all 25 conditions) heuristic
with a flat d′ map has a d′max of 3.9 (and e2 = ∞), in the dotted line. The best-fit
(across all 25 conditions) heuristic has a d′max of 6.9 and the same fall-off rate as the
best fit fall-off rate of the average human observer in search (e2 = 7.0), in the dashed
curve. (b) Overall search accuracy for Bayes-optimal and heuristic searchers in (a),
with the target absent rate p0 of 0.5 and 0.0. (c) Actual d′ maps with an e2 of 7.0
and a range of d′max, in colored curves. The two heuristic searchers are the same as
those in (a). (d) Overall search accuracy for Bayes-optimal and heuristic searchers in
(c), with the target absent rate p0 of 0.5 and 0.0. (e) An example of the d′ map that
varies randomly per trial. The baseline d′ map has a d′max of 6.0 and an e2 of 7.0. (f)
Overall search accuracy for Bayes-optimal and heuristic searchers for the baseline d′

maps with a d′max of 6.0 and e2 ranging from 1 to 9 visual degrees.
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where d̂′ is the assumed d′ map in the decision process.

One of the simplest heuristic decision rules is to assume a completely flat d′

map. The best fit heuristic searcher with a flat d′ map has search performance nearly

identical to that with optimal decision rules (Figures 4.5d and 4.5e). A slightly more

complex implementation is to assume a d′ map with a fixed peak and a fixed fall-off

rate in the decision process. The best fit heuristic search with a fall-off d′ map also

has search performance nearly identical to that with optimal decision rules. Both

observations hold whether the target is present in half of the trials or always present.

We also found a wide range of the assumed fall-off rates ê2 give almost equiv-

alent levels of overall search accuracy (Figures 4.6a and 4.6c), as long as the assumed

peak d̂′max is adjusted accordingly to maximize search accuracy. That means, the

shape of a simple heuristic is not a major factor on the performance lag of that

heuristic searcher to the Bayes-optimal searcher. Over the 25 conditions with a wide

range of combinations of the actual d′max and e2, the best-fit heuristic searcher main-

tains a performance lag less than 4% in most cases (Figures 4.6b and 4.6d).

Under natural conditions, the properties of the background scene vary over

space, and hence the d′ map is generally different with every new fixation. We sim-

ulated this situation by starting with a baseline d′ map and varying per trial the

actual d′ value at each location, according to a normal distribution with a standard

deviation of 20% of the base value. Figure 4.5c shows a single example of a random

d′ map, where the baseline d′ map has a d′max of 6.0 and an e2 of 7.0. Figure 4.5f

shows the heuristic decision rules with fixed flat and fall-off d′ maps still search nearly

optimally even when the actual d′ map randomly varies on each trial.

Given the varying shapes of 25 baseline d′ maps, a heuristic searcher maintains

a performance lag less than 4% in most cases (Figures 4.7a and 4.7b). When the
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(a) (b)

(c)
(d)

Figure 4.6: Comparison of Bayes-optimal and heuristic searchers. (a) The overall
proportion correct over 25 conditions with d′max = 3, 4.5, 6, 7.5, 9 and e2 = 1, 3,
5, 7, 9, for the Bayes-optimal (orange) and heuristic (black) searchers. The Bayes-
optimal searcher uses the optimal decision rule in each condition, while the heuristic
searchers use a fixed assumed d′ map across all 25 conditions. For each heuristic, the
assumed fall-off rate ê2 is first fixed, and then the assumed peak d̂′max was fitted to
maximize overall proportion correct across all 25 conditions. The target-absent prior
was 0.5. (b) The heatmap of the performance lag, defined as the difference between
the proportion correct of the optimal search and that of a fixed heuristic (d̂′max = 6.9,
ê2 = 7.0, fitted to maximize overall proportion correct across all 25 conditions). (c)
The overall proportion correct as in (a), but with a target-absent prior of 0.0. (d)
The heat map of the performance lag as in (b), but with a target-absent prior of 0.0.

target-absent prior is 0.5, the average performance lag across all conditions is 1.57%.

When the target-absent prior is 0.0, the average performance lag across all conditions

is 2.08%.
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(a) (b)

Figure 4.7: Comparison of the Bayes-optimal searchers and a heuristic searcher given
random d′ maps. (a) The heatmap of the performance lag, defined as the difference
between the proportion correct of the Bayes-optimal search and that of a fixed heuris-
tic (d̂′max = 6.9, ê2 = 7.0, fitted to maximize overall proportion correct across all 25
conditions). Baseline d′ maps d′max = 3, 4.5, 6, 7.5, 9 and e2 = 1, 3, 5, 7, 9. In each
trial, the actual d′ map is a random sample of the multi-variate independent Gaussian
distribution, with the baseline d′ map as the mean and 20% of the mean value as the
standard deviation. The Bayes-optimal searcher uses the exact sampled d′ map on
every trial. The target-absent prior was 0.5. (b) The heatmap of the performance lag
of the same heuristic searcher to the Bayes-optimal searcher when the target-absent
prior was 0.0.

These results strongly suggest that the HVS uses a highly heuristic rule in

covert search, given little or no benefit in implementing the optimal rule. Given that

many heuristics achieve near-optimal overall search performance, can we estimate the

specific heuristic rule used by human observers from behavioral data? The answer

appears to be a partial yes. But we need to first incorporate two biological factors

into our search model—foveal neglect and correlated neural noise.

The efficiency-limited-foveated (ELF) searcher proposed byWalshe and Geisler

[59] allocates attentional sensitivity gain in V1, based on the retinotopic map of the
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primary visual cortex [137]. Here, we use the same retinotopic mapping for gain

modulation. Figure 4.8 shows how the backgrounds at the 19 locations map between

retinal space and cortical space. With the same area size in retinal space, background

patches with smaller eccentricity occupy more area in V1. The location relative

to the map center is flipped both horizontally and vertically (independent to the

vertical flipping from image space to retinal space). For example, a top left location

in the retina corresponds to a location at the lower right occipital lobe (and the right

temporal lobe downstream).

(a)

(b)

Figure 4.8: Retinotopic mapping of background patches between (a) retinal space
and (b) cortical space. Colors indicate the orientation of a location with regard to
the display center. Iso-orientation and iso-eccentricity contours are matched in two
plots and marked with gray lines.

A fixed total amount of attentional sensitivity gain is distributed over this

retinotopic map and based on the measured anatomical density of the ganglion cells

in the human retina [41, 42]. The attentional sensitivity gain map in V1 is modeled

as a Weibull function
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g(⃗i) = gf + (gp − gf )
[
1− e−(i/a)b

]
(4.22)

where i⃗ = (i, j) is a coordinate in V1, i represents a coordinate along the

horizontal meridian direction, gf , gp are the gains in the fovea and periphery, respec-

tively, and a, b are the steepness and shape parameters of the gain modulation. The

attentional sensitivity gain g(x) at each location x is applied as

x = x(⃗i) d′g(x) = g(x)d′(x) (4.23)

We assume the existence of noise with common sources that are added to

the responses at all potential target locations. These common sources cause the

total noise at the different locations to be partially correlated. For simplicity, we

further assume that the independent noise and common noise are both Gaussian

distributed, with standard deviations of σ and σ0, respectively. Thus, the total noise

variance at each target location is σ2 + σ2
0. In the detection task, the correlated

noise component necessarily lowers the detectability. The detectability in detection is

d′d = a/
√
σ2 + σ2

0. However, the common noise has little or no effect on the optimal

decision rule in the search task. For example, with a heuristic rule using a flat d′

map, the effect of the correlated noise on d′ is cancelled out by the max rule, due to

the same amount of increase or decrease for responses at all potential target locations

in each trial. Then the detectability in search is d′s = a/σ. Because of the correlated

noise, the peripheral gain parameter gp can exceed 1.0. The estimated value of the

periphery gain provides an estimate of the proportion of the total variance due to

correlated noise:
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σ0

σ + σ0

= 1− ĝ−2
p (4.24)

Also, we note that the optimality of the max rule still holds even when the

response is correlated across locations (see Section 1.9).

Combining these two factors, we found the heuristic searcher that best fits the

average human performance in covert search. This heuristic searcher is fitted with

a maximum likelihood method focusing on 13 metrics; they are the overall correct

rejection rate plus the hit, miss, false alarm, and false hit rates at the central location,

the surrounding six locations, and the outer 12 locations. The best fitting model has a

foveal gain of 0.780, a peripheral gain of 1.348, an assumed d′max of 3.5, and an assumed

e2 of 7.0. Figure 4.9 shows the gain modulation and correlated noise. Attentional

gain in the fovea is 58% of that in the periphery. The amount of peripheral gain

above 1.0 is due to correlated noise, implying that 45% of the total noise variance

is correlated. The d′ map of this heuristic searcher is shown in Figure 4.2d, and its

thresholds were plotted as the blue bars in Figure 4.4.

When we forced the heuristic d′ map to be constant over potential target

locations, the maximum likelihood fit is a bit worse than the aforementioned heuristic

searcher with an assumed d′ map that decreases along eccentricity, but still much

better than the Bayes-optimal searcher (Figure 4.4, quantitative comparison in the

caption). This searcher with a flat heuristic d′ map has a foveal gain of 0.761, a

peripheral gain of 1.342, and an assumed d′ map of 3.1. The estimated effect sizes of

foveal neglect and correlated noise are almost the same.

We also measured human search performance in a 7-location search task, where

the target could be present in the central seven location locations, while the back-
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(a)

(b)

Figure 4.9: Foveal neglect and correlated noise. (a) Retinotopic gain map. The
flattened V1 sheet has a constant density of neurons. The grid of contours shows the
retinal locations of the cortical neurons’ receptive fields. (b) Attentional gain along
the horizontal meridian.

ground patches still appeared in all 19 locations. Figure 4.10 shows this task cannot

distinguish between the heuristic searchers with a flat or fall-off assumed d′ map,

though both of them fit human behavior much better than the Bayes-optimal searcher.

The fall-off heuristic has a foveal gain of 0.966, a peripheral gain of 1.259, an assumed

d′max of 4.6, and an assumed e2 of 15.8. The flat heuristic has a foveal gain of 0.860,

a peripheral gain of 1.325, and an assumed d′ map of 3.7. The estimated levels of

foveal neglect and correlated noise are slightly lower in this task compared to the

19-location search task.

As can be seen in Figure 4.11, all individual observers in both the 19-location

and 7-location tasks had a certain and often similar level of foveal neglect and corre-

lated noise.

In summary, both flat and fall-off heuristic searchers with the combination of

very simple heuristic d′ map, foveal neglect and correlated noise, provide a plausi-

ble explanation of the seemingly paradoxical detection and search results in human
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(a) (b) (c)

Figure 4.10: Correct responses and errors in the 7-location search task by retinal
eccentricity. (a) Histogram of hits, misses, false alarms (FA) and false hits (FH)
in the central location, for the average observer (gray), the Bayes-optimal searcher
given the d′ map of the average observer in detection (orange), the best-fit heuristic
observer given an assumed d′ map that falls off, the average human d′ map in the
detection task, correlated noise and foveal neglect (blue), and the best-fit heuristic
observer given a flat assumed d′ map, the average human d′ map in the detection
task, correlated noise and foveal neglect (dark green). (b) Histogram of the surround
six locations. (c) Histogram for all locations. The correct rejection rate and overall
accuracy are also included. (Number of trials N=6800. Error bars are bootstrapped
95% confidence intervals. Fall-off heuristic: log-likelihood = -8228, AIC = 16468, BIC
= 16509. The flat heuristic is comparable: log-likelihood = -8230, AIC = 16470, BIC
= 16504. The Bayes-optimal searcher is the worst: log-likelihood = -8405, AIC =
BIC = 16810. The fall-off model is e1.0 times as probable as the flat heuristic model
and e171 times as probable as the Bayes-optimal searcher.)

performance, that human observers had better overall search accuracy than the Bayes-

optimal searcher.

How generalizable are these results with varying numbers of potential target

locations? We measured human search performance when the number of target loca-

tions is 7, 61, or 91. I have mentioned the configuration of the 7-location search task

earlier. For the 61-location configuration, the background had a diameter of 1.9 vi-

sual degrees, and the potential locations are still at the center of background patches,

separated by 2.2 visual degrees. For the 91-location configuration, the background

had a diameter of 1.6 visual degrees, and the potential locations are still at the center

of background patches, separated by 1.8 visual degrees. In both configurations, all
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(a) (b)

Figure 4.11: Attentional sensitivity gain in individual human observers. (a) Estimated
gain in the 19-location search task, for the average human observer and the four
individual observers, in the same order as the four rows in Figure 4.3. (b) Estimated
gain in the 7-location search task.

potential target locations still cover the central 16 visual degrees of the visual field.

We also ran preliminary search trials here with highly visible targets to make sure

that the human observers made no errors in clicking on the target location, so that

their search performance was not limited by spatial memory and motor control.

Comparison of the human and model d′ maps for search in varying numbers

of locations is shown in Figure 4.12. Similar to the case when the number of target

location is 19 (Figures 4.2b and 4.2c), near-foveal region has much more similar d′

values compared to that from the predictions of the Bayes-optimal searcher; that

implies some level of the foveal neglect effect.

Table 4.1 summarizes the proportion correct for the average human observer,

four individual observers in all detection and search tasks, and the proportion cor-

142



(a) (b) (c)

(d) (e) (f)

Figure 4.12: Search d′ maps for varying numbers of search locations. (a) Search d′

map of the average human observer when the target was known to appear only at
one of the central 7 locations in half of the trials, while the background patch still
appeared at all 19 locations. (b) Search d′ map of the average human observer when
the target appeared in one of the 61 locations in half of the trials. (c) Search d′ map of
the average human observer when the target appeared in one of the 91 locations in half
of the trials. (d) Search performance of the Bayes-optimal searcher in the 7-location
search task, given the central seven d′ values from the 19-location d′ map in Figure
4.2a. (e) Search performance of the Bayes-optimal searcher in the 61-location search
task, with a d′ map interpolated and extrapolated from the 19-location d′ map in
Figure 4.2a. (f) Search performance of the Bayes-optimal searcher in the 91-location
search task, with a d′ map interpolated and extrapolated from the 19-location d′ map
in Figure 4.2a. Error bars are bootstrapped 95% confidence intervals.

rect of their corresponding Bayes-optimal searchers. The human observers have a

significantly higher overall accuracy than the corresponding Bayes-optimal searcher

in every single search configuration. The HVS indeed performs supraoptimal (covert)
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visual search.

Table 4.1: Proportion correct in all experiments for the four human observers and
the average human observer. The overall accuracy of the Bayes-optimal searcher was
computed given the corresponding individual or combined d′ map, and interpolated
and extrapolated when necessary. Asterisks indicate the p-values of the human accu-
racy to the accuracy distribution of the corresponding Bayes-optimal searcher, that
*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.00001.

Now we consider a family of models with heuristic prior map only (no heuristic

deviation of the d′ map), that is

x̂ = arg max
x∈X

[ln p̂x + d′x(R
′
x − d′x/2)] (4.25)

The target-absent prior p0 is an essential element of the overall prior map to

consider. We parameterized the rest of the prior map (when the target was present),

as a function of the retinal eccentricity

p(e) ∝ (1− p0)
ep

e+ ep
(4.26)
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where ep is the fall-off parameter.

This is a more arbitrary choice compared to the parameterization of the d′

map, as no “foveation” is commonly expected in the prior map based on the scene

context. Nevertheless, we used this family of prior maps to demonstrate the effect of

heuristic priors on covert search performance.

Consider the prior space of p0 = 0.5 or 0.0, ep ranging from 0.2 to ∞, as shown

in Figure 4.13a. No matter if the target was present in half of the trials or always

present, assuming p0 correctly and ep incorrectly is sufficient to achieve near-optimal

search performance, within a difference of 2% to the Bayes-optimal searcher (Figures

4.13b and 4.13c). As expected, the largest performance lag occurs when the assumed

ep is most different from the actual ep.

As the actual ep increases, the overall search accuracy decreases rapidly from

85% to 60%, because the target appears more commonly in the periphery where it

is less detectable than in the fovea (Figure 4.13d). Nevertheless, assuming a single,

fixed, flat target-present prior map, with the correct target-absent prior, is near-

optimal across all search conditions.

Search performance is fairly sensitive to the heuristics of target-absent prior.

As shown in Figures 4.13e and 4.13f, when the actual target-absent prior p0 is 0.5,

overall search accuracy is near-optimal when the estimated p0 is around 0.4 to 0.7.

When the actual target-absent prior p0 is 0.0, overall search accuracy is near-optimal

when the estimated p0 is less than around 0.1.

Nevertheless, ignoring locations where targets sometimes appear is detrimen-

tal to overall search accuracy (Figure 4.14). We simulated this situation by assuming

zero priors progressively by “ring”. We refer to rings here as hexagon-edged circles
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Effect of heuristic priors on covert search performance. (a) The actual
target-present prior probability kernel with six different values of the fall-off parameter
ep. (b) The performance lag, difference in the overall search accuracy between the
Bayes-optimal searcher and the heuristic searchers with a certain assumed ep and a
perfect estimation of p0, when p0 = 0.5. (c) The performance lag when p0 = 0.0.
(d) The overall search accuracy of the Bayes-optimal searcher and a single heuristic
searcher with fixed, flat target-present prior map and a perfect estimation of p0, when
p0 are 0.5 and 0.0. Those differences in performance correspond to the last columns
in the heatmaps (b) and (c). (e) The overall accuracy averaged over all six conditions
of the Bayes-optimal (orange) and heuristic searchers (black) that assume various p0
values and a flat prior over all target locations, when p0 = 0.5. (f) The overall accuracy
averaged over all six conditions of the Bayes-optimal (orange) and heuristic searchers
(black) that assume various p0 values and a flat prior over all target locations, when
p0 = 0.0.
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counted outwards from the central location, where the 19-location configuration has

three rings, the 61-location configuration has five rings, and the 91-location config-

uration has six rings. Ignoring near-foveal rings hammers proportion correct more

than ignoring peripheral rings, despite considerably more target locations existing in

peripheral rings. This results from the fact that the target were more detectable near

the fovea than in the periphery.

(a) (b) (c)

Figure 4.14: Effect of highly heuristic priors on covert search performance. (a) The
overall proportion correct in the 19-location search task of the Bayes-optimal searcher
and heuristic searchers assuming the target cannot be present at certain target loca-
tions (assume local priors of 0), when p0 = 0.5 and 0.0. “Dim inward” means the
rings farthest from the center are assumed priors of 0 first. “Dim outward” means the
rings closest to the center are assumed priors of 0 first. When no ring is assumed zero
prior, the searcher is optimal. (b) The overall proportion correct in the 61-location
search task of the Bayes-optimal searcher and heuristic searchers. (c) The overall
proportion correct in the 91-location search task of the Bayes-optimal searcher and
heuristic searchers. For all searchers, the d′ map had a d′max of 7 and an e2 of 6, and
no heuristic d′ values were used.

How necessary is an exact normalization of the receptive field response for

heuristic searchers to reach near-optimal performance? All the optimal and heuristic

decision rules (Equations 4.19, 4.21, 4.25) mentioned so far use the response R′ exactly

normalized by the standard deviation of the response, which is the standard deviation

of the white noise for a simple template matching observer. Assume the mean response
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is 1.0 when the target is present, and 0.0 when the target is absent (e.g., a target with

an energy of 1 for a simple template matching model). The unnormalized response

R = σR′ = R′/d′, where d′ = 1/σ̂, or R′ = d′R. Therefore, we consider this family of

models with not only heuristic d′ map but also heuristic normalization, that is

x̂ = arg max
x∈X

[
ln px + d̂′2x (Rx − 1/2)

]
(4.27)

where Rx is the unnormalized receptive field response.

As shown in Figures 4.15a and 4.15b, we considered the same 25 actual d′ map

conditions in Figures 4.5a and 4.5b, but with two different heuristic searchers that

maximize overall search accuracy across all conditions when normalization is applied

heuristically. When the target is present in half of the trials, heuristic deviation

from the actual d′max and e2 brings overall accuracy noticeably below the Bayes-

optimal searcher (Figures 4.15d and 4.15e). Accuracy falls significantly when those

two parameters are overestimated. Those effects are visible, but less in size when

the target is always present. In the case where d′ map varies randomly per trial,

heuristic normalization hammers down search accuracy in most cases (Figures 4.15c

and 4.15f). To summarize, exact normalization is necessary for heuristic searchers to

feasibly achieve near-optimal performance.

4.4 Discussion

Cued detection and covert search performance were measured for a wavelet

target in Gaussian white noise under carefully controlled conditions. The detectabil-

ity map measured in the cued detection task was used to predict covert search per-

formance of the Bayes-optimal searcher, assuming statistically independent sensory
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Effect of heuristic normalization on the covert search performance of
searchers with heuristic d′ maps. (a) Actual d′ maps with a d′max of 6.0 and a range
of e2, in colored curves. The best-fit (across all 25 conditions) heuristic with a flat d′

map has a d′max of 2.9 (and e2 = ∞), in the dotted line. The best-fit (across all 25
conditions) heuristic has a d′max of 6.5 and an e2 of 7.0., in the dashed curve. Both
heuristics normalize response based on Equation 4.27. (b) Overall search accuracy
for Bayes-optimal and heuristic searchers in (a), with the target absent rate p0 of 0.5
and 0.0. (c) Actual d′ maps with an e2 of 7.0 and a range of d′max, in colored curves.
The two heuristic searchers are the same as those in (a). (d) Overall search accuracy
for Bayes-optimal and heuristic searchers in (c), with the target absent rate p0 of 0.5
and 0.0. (e) An example of the d′ map that varies randomly per trial. The baseline d′

map has a d′max of 6.0 and an e2 of 7.0. (f) Overall search accuracy for Bayes-optimal
and heuristic searchers for the baseline d′ maps with a d′max of 6.0 and e2 ranging
from 1 to 9 visual degrees.
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responses from the potential target locations. We found that human performance

slightly exceeded the predictions of the Bayes optimal decision rule, despite the com-

putational complexity of the optimal rule, and despite the fact that humans showed

a loss of sensitivity in the fovea. We found these seemingly paradoxical results can

be explained quantitatively by these three factors: (1) Extremely simple heuristic

decision rules, together with the local normalization, can achieve near-optimal per-

formance. (2) Correlated neural noise causes the d′ values measured in the detection

task to underestimate the effective d′ values in the search task. (3) Foveal neglect

only reduces noticeably the d′ value at the central target location.

We chose a 6-cpd wavelet target because its detectability varies substantially

over the search region with a diameter of 16 visual degrees. It would be informative

to repeat the measurements for other targets, Given the fact that simple heuristic

decision rules are near-optimal for a wide range of d′ maps, it is highly likely that our

findings will generalize well across a wide range of spatially-localized targets.

We chose white noise background because they have a dense texture similar

to natural images yet are statistically simple, and widely used in studies of visual

behavior. Natural backgrounds, on the other hand, are statistically complex and

non-stationary, so that their masking typically vary across potential target locations.

Thus, the d′ map varies on each trial with both foveation and variation in the masking

properties of the background. We have shown that simple fixed heuristic rules are

effectively optimal even when the d′ map changes randomly on each trial (Figures

4.5f and 4.7), which suggests that our findings may remain valid over a wide range

of stationary and non-stationary backgrounds. A difficulty in directly testing this

hypothesis is to measure the d′ map for the stimulus at each location for each trial for

the calculation of the optimal performance. It is tractable to estimate the d′ map for
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white noise background with spatially varying luminance and contrast [17, 98, 138].

For natural backgrounds, this estimation is much harder, but some progress has been

made [17, 25, 79, 80, 128]. We are optimistic that a model with a simple heuristic

decision rule, correlated noise, and foveal neglect will be able to predict human covert

search performance in natural backgrounds.

We acknowledge that our theoretical analysis and computational modeling

adopt the standard SDT assumption–the observer’s decision variable is normally dis-

tributed. This assumption is reasonably justified in white noise background. Psy-

chophysical literature has shown linear receptive field responses to natural back-

grounds are approximately normally distributed if the responses are normalized by

background properties (e.g., luminance and contrast) [16, 17].

Under natural search conditions, the number of potential target locations often

varies from one situation to the next, and hence varying the number of potential loca-

tions is a key experimental manipulation. When there is just a single potential target

location, the search task is reduced to a very simple identification, discrimination,

or detection task. In general, as the number of potential target locations increases,

search accuracy and speed decrease. The major scientific questions are what stim-

ulus and neural factors are responsible for the decreases, and whether models that

incorporate the relevant neural factors can quantitatively predict search performance.

A caveat to results in the 61- and 91-location search tasks is though those re-

sults are quite consistent with the 7- and 19-location search tasks, they were measured

from fewer trials, and the d′ map for the Bayes-optimal searcher was partially extrap-

olated. Further experiments and analyses are desired for sounder generalization to

our conclusions in the varying numbers of target locations.

Normalization is a fundamental property of cortical processing [12–14]. The
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present result suggests it may play a more important role in perceptual decision-

making than previously appreciated. For detection tasks in natural backgrounds,

it has been shown that normalization by local luminance, contrast, and similarity

allows near-optimal decision-making with a single fixed decision criterion [17]. The

present results expand this conclusion by showing that such normalization also allows

extremely simple heuristic decision rules to achieve near-optimal performance for a

wide range of natural identification tasks. Without normalization, the heuristics

described in this chapter will not perform nearly as well on natural and other non-

stationary backgrounds (Figure 4.15f).

The simplicity of near-optimal search rules allows a feasible neural implemen-

tation and a sizable space to tolerate individual differences in search strategy.

Where humans tend to fall below the predictions of the optimal decision rule

is when the task is to identify the locations of multiple targets [139] or multiple cate-

gories of targets, or to identify targets with demands on memory or high-level cogni-

tive computation (e.g., which location contains a number divisible by 13). Theories of

covert search in such conditions need to take the memory capacity and/or cognitive

load into consideration. Nonetheless, in many real-world situations, observers are

covertly searching for targets that require low cognitive effort.

Our results do not prove that correlated noise is the source of the supraoptimal

accuracy of the observers in the experiments, but it is a plausible hypothesis, consis-

tent with the evidence for slow modulations in membrane potential and blood oxygen

level-dependent (BOLD) signal [140–144]. We showed correlated noise can create a

mismatch between the d′ values estimated in the cued detection task and the effective

d′ values in the covert search task. Such mismatches might occur in other identifi-

cation tasks, which could become powerful tools to investigate the characteristics of
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correlated noise.

An interesting possibility is that the nervous system injects correlated vari-

ations into the pathways transmitting information to the brain areas that perform

identification tasks. Because these correlated variations do not hurt identification

performance, they could provide an independent channel for communicating other

kinds of information, including reward signals, arousal signals, and global context

information. The benefits of this low bit rate communication channel may outweigh

the cost of reduced sensitivity in simple yes/no tasks.

Overt search can be roughly characterized as fixation periods separated by

saccades. During each fixation, the stimulus information is gathered and processed

to reduce uncertainty in the actual target location, and the next fixation location is

selected after computation. The optimal decision rule for picking the next fixation

location also takes into account the d′ and prior maps [77]. An important next step

is to perform a Bayesian heuristic decision analysis for fixation selection.

Our findings with regard to heuristic performance are likely to generalize to

many other identification tasks, as most identification tasks can be described as mak-

ing choices between mutually exclusive events. Bayesian heuristic decision analysis

described in this chapter may provide useful insights and testable predictions beyond

detection and search tasks.
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Chapter 5: Heuristic Analysis

Abstract

We conducted a systematic analysis of Bayes heuristic covert

searchers and presented the distribution of their performance lag

to the Bayes-optimal searchers. Increasing the number of param-

eters that are used heuristically in the decision process generally

increases the performance lag, but near-optimal search performance

can still be achieved even when all parameters are highly heuristic,

which indicates interaction among heuristic components can cancel

out their individual effects on search performance. Heuristic normal-

ization, the absence of log-likelihood centering, and heuristic max

rule most likely decrease overall search performance considerably.

Though enormous heuristics can reach the same level of overall ac-

curacy in covert search, I demonstrate the possibility of distinguish-

ing different heuristic compositions by comparing the pattern in the

location-dependent statistics.

5.1 Introduction

Ideal observer has made valuable contributions to numerous areas of visual

perception, such as pattern detection, discrimination, estimation, visual attention,

perceptual grouping, shape, depth, and motion perception [29]. As the ideal observer

continues to serve as a powerful tool for explaining and predicting visual behavior,

one might ask if its computation in most real-world tasks is overly laborious for the

human visual system (HVS) to implement. Furthermore, even if the HVS is able to
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implement the optimal computation for best performance, is the effort worthwhile

that the benefits overweight the costs? What if the task is too volatile, uncertain,

complex, and ambiguous to derive the optimal computation?

For those reasons, heuristic decision-making emerges from a multitude of re-

search fields and competes for attention with normative decision-making. Simon [145]

coined the term bounded rationality to describe the fact that human rationality is

limited and individuals make decisions heuristically instead of acting as mathemati-

cally perfect agents. Gigerenzer and Gaissmaier [146] describe heuristics as “strategies

that ignore information to make decisions faster, more frugally, and/or more accu-

rately than more complex methods”. In other words, heuristic decision-making is

the efficient cognitive process that uses information suboptimally and sometimes still

achieve near-optimal or even supraoptimal performance in tasks.

I describe a model as “normative” when it is where heuristics derive from.

A normative model is typically optimal or expert (high-performance), with decision

parameters matching the sensory parameters. In light of human visual detection and

search, we ask questions below on heuristic decision-making:

• When do heuristic rules cause performance lag to normative searchers? When

do heuristics become detrimental to performance?

• How normatively or heuristically does the human visual system search in a

certain search condition? How could one measure what heuristics, if any, are

being used? How could different heuristics be distinguished from each other?

In Chapter 4, we discovered the supraoptimal search performance of human

observers and employed the near-optimality of extremely simple heuristic rules to
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explain the results. We noticed the heuristics with fall-off and flat d′ maps fit almost

equally well to experimental data, which means though the decision processes in

our detection and search tasks were well bridged, those tasks were not useful to

distinguish different possible heuristics the human observers were using. Therefore, in

this chapter, we systematically simulated the effects of various heuristic rules on visual

search behavior, so those predictions can be used reversely to generate meaningful

hypotheses and further experimental testing.

A highly abstract representation of a decision-making process is (w, x, s, f, y),

where w is the state of the world or environment, x is the relevant input information, s

is the parameters and hyperparameters of the system, f is the computational process-

ing from information to decision when the system is at a certain state, and y = f(x; s)

is the decision made. Heuristics can occur in parameters, hyperparameters, and com-

putation of the system, with their effectiveness depending on the (often statistical)

state of the world, the availability and uncertainty of relevant input information, and

the utility landscape of the decision space.

The maximum a posteriori covert search rule in Equation 4.19 has the receptive

field response as the input, the actual d′ map as the observation state, the max rule,

the log, normalization and summation operations as the computation, the response

of target location as the final decision, and the configuration of locations, the target,

backgrounds as the state of the world.

We have shown in Figures 4.5, 4.6 and 4.7 that simple fixed heuristic d′ maps

allows near-optimal performance in the 19-location covert search task, even if the ac-

tual d′ map varies randomly every trial. We also showed in Figures 4.13 and 4.14 that

simplistic heuristic target-present prior maps are sufficient for near-optimal search

performance, as long as no target location is ignored, while the target-absent prior
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needs to be assumed more accurately. Then Figure 4.15 shows, exact normalization

is a critical computation for heuristic searchers to stay close to best performance.

In this chapter, we conducted a systematic analysis of Bayes heuristic covert

searchers and presented the distribution of their performance lag to the Bayes-optimal

searchers. Increasing the number of parameters that are used heuristically in the de-

cision process generally increases the performance lag, but near-optimal search per-

formance can still be achieved even when all parameters are highly heuristic, which

indicates interaction among heuristic components can cancel out their individual ef-

fects on search performance. Heuristic normalization, the absence of log-likelihood

centering, and heuristic max rule most likely decrease overall search performance con-

siderably. Though enormous heuristics can reach the same level of overall accuracy

in covert search, I demonstrate the possibility of distinguishing different heuristic

compositions by comparing the pattern in the location-dependent statistics.

5.2 Preliminary exploration of covert search heuristics

To conduct a systematic investigation of the high-dimensional perception space

in our covert search task, it is valuable to first itemize the relevant variables. We

keep the same hexagonal structure of target locations (e.g., Figure 4.12) and the

Gaussian-distributed receptive field response. The radius of the display (from the

central location to the horizontal edge location) is kept as 8 visual degrees, though this

value can be perturbed in further analysis. Rings can be counted outwards from the

central location, with the number of locations at the k− th ring as nk = 1, k = 1 and

nk = 6(k−1), k > 1. The number of total locations with k rings is Nk = 3k2−3k+1.

For the actual prior map, we have the target-absent prior p0 and assume the target-

present prior map follows
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p(e) ∝ 1− p0
kpe+ 1

(5.1)

where kp is the slope parameter, equivalent to the inverse of the fall-off pa-

rameter ep in Equation 4.26. An kp of 0 indicates the prior map is flat. The prior

map is always normalized to have a sum of 1 − p0, so the total prior is 1. For the

actual d′ map, we have a peak parameter d′0 (as d
′
max in the last chapter) and a slope

parameter kd, with

d′(e) =
d′0

kde+ 1
(5.2)

kd is equivalent to the inverse of the fall-off parameter e2 in Equation 4.20. An

kd of 0 indicates the d′ map is flat. Lastly, we have the heuristic parameters of the

prior and d′: p̂0, k̂p, d̂
′
0, and k̂d.

We prioritize decision-making processes and heuristics that are practical and

common in the real world, as it is impossible to explore all heuristics for any problem.

Table 5.1 provides an overview of our simulation of more than 20,000 combinations

of variables. Rings of 3, 5, and 7 corresponds to 19, 61, and 127 target locations,

and low, medium, and high location densities within the visual field. Target-absent

priors of 0, 0.5, 0.9 corresponds to the search cases where the target is always present,

sometimes present, and rarely present. kp with values from 0 to 1 covers the cases

from when the target is equally likely to show up at every target location, to when

the target is much more likely to show up near the fovea. The values of foveal d′ from

4 to 10 indicate the target is at least fairly detectable to the observer when being

directly focused on; otherwise, the observer may move eyes, head and/or body to

have a reasonable chance of locating the target.
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Because the data set is large, we employed a machine learning approach for

preliminary analysis. We calculated the overall accuracy, hit rate, correct rejection

rate, miss rate, false alarm rate, false hit rate, and the performance lag. Then we

classified the performance lag with thresholds of 1% and 10%. For each configuration

of target locations, our feature variables include p0, kp, d
′
0, kd and the differences

between them and their heuristics parameters (for better interpretation), and the lag

level as the target variable.

Variable
Name

Expres-
sion

Data
Type

Value Description

n ring k int 3,5,7
number of rings in the potential

target locations

p0 p0 float
0, 0.5, 0.9

target-absent prior (proportion in
the trials)

kp kp float
0, 0.1, 0.2, 1 target-present slope parameter

d0 d′0 float
4,7,10 d′ map peak parameter

kd kd float
0, 0.1, 0.2, 1 d′ map slope parameter

e p0 p̂0 float
0 – 0.9 heuristic target-absent prior

e kp k̂p float
0 – 1

heuristic target-present slope
parameter

e d0 d̂′0 float
1 – 13 heuristic d′ map peak parameter

e kd k̂d float
0 – 1 heuristic d′ map slope parameter

acc
float

0 – 1 overall search accuracy

hit
float

0 – 1 overall hit rate

cr
float

0.7 – 1 overall correct rejection rate
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miss
float

0 – 1 overall miss rate

fa
float

0 – 0.3 overall false alarm rate

fh
float

0 – 1 overall false hit rate

d p0 p̂0 − p0 float
-0.4 – 0.4

difference in the actual and
heuristic target-absent prior

d kp k̂p − kp float
-1 – 1

difference in the actual and
heuristic target-present slope

parameter

d d0 d̂′0 − d′0 float
-3 – 3

difference in the actual and
heuristic d′ map peak parameter

d kd k̂d − kd float
-1 – 1

difference in the actual and
heuristic d′ map slope parameter

lag
float

0 – 1
difference in the actual and

heuristic overall search accuracy

lag level
cat-
e-

gory
0,1,2

levels of performance lag. 0
means lag is less than 1%; 1

means lag is between 1–10%; 2
means lag is greater than 10%.

Table 5.1: Scanning space of covert search heuristics.

In the 19-location search task, a simple decision tree model that maximizes

Gini gain in the training set is able to achieve a classification accuracy of 93% in

the testing set. The two sets were split with a ratio of 75%/25%. Trials with levels

0–2 of performance lag were fairly balanced, with a rough ratio of 2:2:1. For each

level of performance lag, the precision, recall, and f1-score range from 91% to 97%.

The high accuracy of this decision tree in classification supports its value to predict

when heuristics function well and when they fail. For example, Figure 5.1a shows the

shapes of the actual and assumed prior maps are not important for performance lag.

Also, the difference between the actual and heuristic values of parameters in prior

and d′ maps is slightly more useful to predict performance lag than the actual values.
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(a) (b) (c)

Figure 5.1: Feature importance score on performance lag in (a) 19-location (b) 61-
location (c) 127-location covert search. The score was calculated based on the amount
of Gini gain at all branches of the decision that use the feature.

The shapes of the actual and assumed prior maps stay unimportant for perfor-

mance lag as the number of target location increases (Figures 5.1b and 5.1c). At the

same time, the peak parameter d′0 becomes more relevant for predicting performance

lag.

The top layers of the best decision tree in the 19-location search are shown

in 5.2. The top layers happen to be the same after fitting data in the 61- and 127-

location search, so they are not repeatedly plotted. Based on the data set and the

decision tree, inaccurate (especially overestimated) heuristics of the target-absent

prior could be detrimental to search performance, which is consistent with the re-

sults in Figures 4.13e and 4.13f. Furthermore, if the actual d′ map has high values

throughout the visual field (high d′0 and low kd), then the heuristics are more likely to

be near-optimal, as the objective, excellent detectability compensates the subjective,

simplistic heuristics.

The data set shows some worst cases of performance lag (around 30%) if only

a single parameter is heuristic: (1) k̂d assumes a rapid fall-off of the d′ map when

the actual d′ map is low-valued and flat; (2) d̂′0 underestimates the overall d′ map

when the actual d′ map is low-valued and flat; (3) p̂0 estimates a fair proportion of
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Figure 5.2: The first four layers of a decision tree that well predicts performance lag
in the 19-location search task.

target-absence when the target is always present. The co-occurrence of these factors

often results in a performance lag above 70%.

On the other hand, zero performance lag can be achieved even if all four

parameters are heuristic. Specifically, target-absent prior, d′ peak and slope values

are severely underestimated, while the target-present prior slope value is arbitrarily

heuristic. In fact, though an increase in the number of parameters with values as-

sumed heuristically (shorted as “number of heuristics” for later discussion) increases

the median and variance of performance lag, it does not eliminate the cases with

zero and near-zero performance lag (Figure 5.3). This interesting result confirms the

understanding that it is highly unlikely to find a covert search configuration that

allows heuristics to be distinguished by overall search performance alone. Instead,

more detailed patterns, such as location-based statistics, are needed for telling apart

heuristic components.
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(a) (b) (c)

Figure 5.3: Performance lag distribution as a function of the number of heuristics
in the (a) 19- (b) 61- (c) 127-location covert search task. The box plot is standard,
with the first, second, and third quartiles. Outliers that are beyond 1.5 times of
interquartile range from the first and third quartiles are plotted individually.

Consider the effects of overestimation and underestimation of a single param-

eter. If the target-absent prior is overestimated, then the overall correct rejection and

miss rates increase, and the overall hit, false hit, and false alarm rates decrease. If the

target-absent prior is underestimated, the effect is reversed for each statistics above.

If a target-present prior is overestimated, then the hit, false hit, and false alarm rates

at that specific location increases, and the correct rejection and miss rates at that

location decrease. If that prior is underestimated instead, the effect is also reversed

for statistics at that location.

The effect of bias in a single d′ follows a quadratic pattern. When a d′ is

overestimated and other d′ values are estimated ideally, if the target is absent at that

location, the mean difference in log-likelihood between the Bayes-optimal and the

heuristic searchers is (−d̂′2 + d′2)/2 < 0, so the heuristic searcher may have a higher

correct rejection rate and lower false alarm and false-hit-to rate at that location; if

the target is present at that location, the mean difference in log-likelihood between
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the Bayes-optimal and the heuristic searchers is −(d̂′ − d′)2/2 < 0, so the heuristic

searcher may have higher miss and false-hit-from rates and a lower hit rate at that

location. When a single d′ is underestimated, the heuristic searcher may have higher

false alarm, miss, false-hit-from and false-hit-to rates, and lower correct rejection and

hit rates.

For a covert search task where the target is always present, a single overesti-

mated d′ increases the false-hit-from rate and decreases the hit and false-hit-to rate,

while a single underestimated d′ increases the false-hit-from and false-hit-to rate, and

decreases the hit rate.

We predict the effect of a collective bias of d′ in the same way. When the

actual d′ map is flat and all d′ values are overestimated by the same amount, the

heuristic searcher may have a higher overall correct rejection and miss rates, and

lower overall false alarm and hit rates. When the actual d′ map is flat and all d′

values are underestimated by the same amount, the heuristic searcher may have a

higher overall false alarm and miss rates, and lower correct rejection and hit rates.

This effect no longer applies when the target is always present.

With the same parametric heuristics, heuristic normalization (Equation 4.27),

compared to perfect normalization, typically increases performance lag to the Bayes-

optimal searchers, as shown in Figure 5.4, especially when more than two parameters

are heuristic. This result is consistent with our observation in Figure 4.15f. Never-

theless, heuristic normalization improves search performance in a minority of cases.

We also consider the heuristic computation where the last term for centering

the log-likelihood ratio is dropped, that is
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Distribution of performance lag and difference in performance lag with
heuristic normalization, as a function of the number of heuristics. (a-c) Performance
lag is the accuracy difference between the Bayes-optimal and heuristic searchers that
normalize heuristically. (d-f) Difference in performance lag is the difference in the
performance lags between heuristic searchers with perfect and heuristic normalization.
First column: 19-location; second column: 61-location; third column: 127-location.

x̂ = arg max
x∈X

(
ln px + d̂′xR

′
x

)
(5.3)

As shown in Figure 5.5, the centering term d̂′2x /2 is essential for covert search.

Search accuracy typically decreases by 10-50% without centering. Nevertheless, ig-

noring the centering can improve search performance in a minority of cases.

Next, we simulated the heuristic computation that human covert searchers stop
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Distribution of performance lag and difference in performance lag without
centering, as a function of the number of heuristics. (a-c) Performance lag is the
accuracy difference between the Bayes-optimal and heuristic searchers that do not
center the log-likelihood term. (d-f) Difference in performance lag is the difference
in the performance lags between heuristic searchers that center and do not center
the log-likelihood ratio. First column: 19-location; second column: 61-location; third
column: 127-location.

integrating information in target locations if a large local posterior randomly captures

their attention. The heuristic observer first selects the top n largest local responses

(including the target-absent response) and then randomly chooses a response among

those n cases. Mathematically,
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x̂ = arg max(n)
x∈X

[
ln px + d̂′x(R

′
x − d̂′x/2)

]
(5.4)

Randomization of the max rule consistently damages covert search perfor-

mance by 30-50% (Figure 5.6). The random-2-max rule here randomly responds

location between the two largest posteriors.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Distribution of performance lag and difference in performance lag with
the random-2-max rule, as a function of the number of heuristics. (a-c) Performance
lag is the accuracy difference between the Bayes-optimal and heuristic searchers that
responds randomly among the two largest posteriors. (d-f) Difference in performance
lag is the difference in the performance lags between heuristic searchers without and
with the random-2-max rule. First column: 19-location; second column: 61-location;
third column: 127-location.
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Lastly, we varied the d′ maps per trial around a baseline d′ map. Note that

this perturbation is not a heuristic computation, but an extension of the state of the

world and relevant input information. The Bayes-optimal searcher used to calculate

the performance lag in the random d′ condition is able to know the exact d′ map on

each trial. We found the difference in performance lag typically does not change no

matter whether the real-world d′ map varies or not (Figure 5.7). Surprisingly, Figure

5.8 shows even if we increased the standard deviation of the random variation to 40%

of the base vale (with negative d′ set to 0), the difference in performance lag in most

cases is still near zero. This means if a heuristic is near-optimal given a stable d′

map, it is most likely still near-optimal when the actual d′ map varies around with

the original d′ map as baseline values. For instance, the single fall-off or flat heuristic

for the d′ map is sufficient to reach near-optimal search accuracy in the randomly

varying d′ maps (Figure 4.5f).

5.3 Case studies of covert search heuristics

In this section, we focus on comparing the search patterns among heuristic

(and Bayes-optimal) searchers that have the same overall accuracy. If a specific

configuration of the stimuli results in significant differences in behavioral details,

then that configuration can be used as a test to distinguish different heuristic rules.

Figure 5.9 shows such a case. We chose 127 as the number of target locations

for more resolution in the pattern of location-dependent statistics. In such an exper-

iment, the method of human response needs to be confirmed not limited by memory

and motor precision. As we let p0 = 0.5, d′0 = 4.0, and both prior and d′ maps to be

flat, four example searchers with different decision process are able to reach the same

level of overall accuracy. Specifically, the high-p̂0 searcher has lower hit, false hit, and
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Distribution of performance lag and difference in performance lag with
randomly varying d′ map with a standard deviation of 20% of the base value, as a
function of the number of heuristics. (a-c) Performance lag is the accuracy difference
between the Bayes-optimal and heuristic searchers. (d-f) Difference in performance
lag is the difference in the performance lags between heuristic searchers with and
without random variation in d′ map. First column: 19-location; second column: 61-
location; third column: 127-location.

false alarm rates, and higher correct rejection and miss rates than other searchers.

The fall-off and heuristic-normalization searchers have the false hit, false alarm rates

higher than those of the Bayes-optimal searcher, and the miss rate higher than that

of the Bayes-optimal searcher.

Furthermore, location-dependent statistics as a function of eccentricity are

different among the four searchers, as shown in Figure 5.10. The false-hit-from rate
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Distribution of performance lag and difference in performance lag with
randomly varying d′ map with a standard deviation of 40% of the base value, as a
function of the number of heuristics. (a-c) Performance lag is the accuracy difference
between the Bayes-optimal and heuristic searchers. (d-f) Difference in performance
lag is the difference in the performance lags between heuristic searchers with and
without random variation in d′ map. First column: 19-location; second column: 61-
location; third column: 127-location.

is the number of false hit trials from locations with a specific eccentricity divided by

the number of trials with the target present among those locations. The false-hit-to

rate is the number of false hit trials to locations with a specific eccentricity divided

by the number of trials with responses among those locations. The fall-off searcher

has the hit and false alarm rates increasing rapidly as eccentricity increases, and the

false-hit-to and miss rates decreasing rapidly as eccentricity increases, unlike the other
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Comparison of global statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior and d′ maps are flat with
p0 = 0.5 and d′0 = 4.0. The fall-off searcher is only heuristic in the d′ map, with
d̂′0 = 7.0 and k̂d = 0.1, while the high-p̂0 searcher is only heuristic in the prior map
with p̂0 = 0.7. The heuristic-normalization searcher uses Equation 4.27 and has a
single heuristic parameter p̂0 = 0.6. Statistics include (a) overall accuracy (b) hit
rate (c) correct rejection rate (d) false hit rate (e) false alarm rate and (f) miss rate.

three searchers.

Figure 5.11 highlights the trade-off in the search pattern through a heuristic-

normalization searcher and a no-centering searcher. These two searchers are in the

same configuration of the actual prior and d′ maps as above, but they share a search

accuracy (60.22%) far from the Bayes-optimal accuracy (85.02%). The heuristic-
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(a) (b) (c)

(d)
(e)

Figure 5.10: Comparison of local statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior and d′ maps are flat with
p0 = 0.5 and d′0 = 4.0. The fall-off searcher is only heuristic in the d′ map, with
d̂′0 = 7.0 and k̂d = 0.1, while the high-p̂0 searcher is only heuristic in the prior map
with p̂0 = 0.7. The heuristic-normalization searcher uses Equation 4.27 and has a
single heuristic parameter p̂0 = 0.6. The following statistics are plotted as a function
of eccentricity: (a) hit rate (b) false-hit-from rate (c) false-hit-to rate (d) false alarm
rate and (f) miss rate.

normalization searcher has much higher hit and false alarm rates and much lower

correct rejection and miss rates than those of the no-centering searcher.

As expected, because both the actual and heuristic maps are flat in both

no-centering and heuristic-normalization searchers, local statistics are independent
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(a) (b) (c) (d) (e) (f)

Figure 5.11: Comparison of global statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior and d′ maps are flat with
p0 = 0.5 and d′0 = 4.0. The heuristic-normalization searcher (Equation 4.27) has a p̂0
of 0.4 and a d̂′0 of 7.0, while the no-centering searcher (Equation 5.3) has a d̂′0 of 1.0.
Statistics include (a) overall accuracy (b) hit rate (c) correct rejection rate (d) false
hit rate (e) false alarm rate and (f) miss rate.

of eccentricity (Figure 5.12). Specifically, the hit, false-hit-to, and miss rates are

constant across eccentricity; the false alarm rate increases as eccentricity increases,

merely due to increasing number of locations.

We considered the foveation of the HVS and explored the configuration where

the actual d′ map decreases at a moderate rate along eccentricity. Four searchers with

the same level of search accuracy have varying heuristics in the decision process. As

shown in Figure 5.13, the low-d̂′ searcher has higher false hit and false alarm rates than

other searchers. The high-d̂′ and heuristic-normalization searchers have the correct

rejection and miss rates higher than those of the Bayes-optimal searcher, and the hit,

false hit and false alarm rates lower than that of the Bayes-optimal searcher.

Figure 5.14 shows the differences in their location-dependent statistics. The

hit, false-hit-to, false alarm, and miss rates have different speed of change between

the high d̂′ searcher than the heuristic-normalization searcher, though their global
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(a) (b) (c) (d)
(e)

Figure 5.12: Comparison of local statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior and d′ maps are flat with
p0 = 0.5 and d′0 = 4.0. The heuristic-normalization searcher (Equation 4.27) has a
p̂0 of 0.4 and a d̂′0 of 7.0, while the no-centering searcher (Equation 5.3) has a d̂′0 of
1.0. The following statistics are plotted as a function of eccentricity: (a) hit rate (b)
false-hit-from rate (c) false-hit-to rate (d) false alarm rate and (f) miss rate.

statistics are similar. Across eccentricity, the low-d̂′ searcher has a much steeper

false-hit-from rate, a much flatter false-hit-to rate, and an early peak in the false

alarm rate. These differences in the detailed search pattern can be served as signs to

tell apart different heuristics.

5.4 Discussion

We conducted a systematic analysis of Bayes heuristic covert searchers and

presented the distribution of their performance lag to the Bayes-optimal searchers.

Though enormous heuristics can reach the same level of overall accuracy in covert

search, I demonstrate the possibility of distinguishing different heuristic compositions

by comparing the pattern in the location-dependent statistics.

Through the heuristic analysis of Bayesian search, we officially arrive beyond

the typical view of Bayesian decision-making, that human perfectly or almost perfectly
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Comparison of global statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior map is flat with p0 = 0.5,
and the d′ map has a d′0 of 7.0 and a kd of 0.2. The high-d̂′ searcher is only heuris-
tic with d̂′0 = 10.0, while the low-d̂′ searcher has a p̂0 of 0.3 and a d̂′0 of 4.0. The
heuristic-normalization searcher uses Equation 4.27 and has a single heuristic param-
eter p̂0 = 0.6. Statistics include (a) overall accuracy (b) hit rate (c) correct rejection
rate (d) false hit rate (e) false alarm rate and (f) miss rate.

integrate statistical information, such as incorporating local priors and reliabilities,

to make decisions that optimize performance. Our analysis show that for covert

search tasks and any other identification tasks that can be expressed with the same

mathematical formulation, a broad spectrum of heuristic decision processes not only

reduce computation efforts, but also achieve near-optimal performance.
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(d)
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Figure 5.14: Comparison of local statistics among searchers with equal overall ac-
curacy in the 127-location search task. The actual prior map is flat with p0 = 0.5,
and the d′ map has a d′0 of 7.0 and a kd of 0.2. The high-d̂′ searcher is only heuris-
tic with d̂′0 = 10.0, while the low-d̂′ searcher has a p̂0 of 0.3 and a d̂′0 of 4.0. The
heuristic-normalization searcher uses Equation 4.27 and has a single heuristic param-
eter p̂0 = 0.6. The following statistics are plotted as a function of eccentricity: (a)
hit rate (b) false-hit-from rate (c) false-hit-to rate (d) false alarm rate and (f) miss
rate.

We acknowledge that though the sensory and heuristic spaces we chose are

reasonable, they are not exhaustive. Similar to the measurement of natural scene

statistics, one could adventure to measure this natural task statistics for conclusions

on heuristics more generalizable than those in this chapter.
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Savage [147], who made significant contribution to the modern Bayesian deci-

sion theory, distinguished a task environment by its complexity, where a small world

refers to a situation where all options along with their probabilities, outcomes and

utilities are known, and a large world refers to a situation where some relevant in-

formation is unknown or inaccessible, so optimality is ill-defined. In our context

of visual detection and search, power-law noise backgrounds and other stationary

backgrounds exemplify small worlds, while natural and medical image backgrounds

and other non-stationary backgrounds exemplify large worlds. Typically, the Bayes-

optimal observer is feasible and optimal in small worlds, and the Bayesian heuristic

observers are practical and satisfactory in large worlds. Nevertheless, the heuristic

analysis in this chapter shows that near-optimal heuristics can also be common and

diverse even in small worlds.
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Chapter 6: Conclusion

The overarching research question that I attempt to answer in this dissertation

is what and how the human visual system (HVS) computes during detection and

search in natural background. We employed a hybrid approach based on Bayesian

Decision Theory (BDT) and Signal Detection Theory (SDT), to model, explain, and

predict human visual detection and search in natural backgrounds. We compared

the behavioral pattern of the HVS in detection and search tasks with that of the

Bayes ideal observers, the Bayes observers with biological components, and the Bayes

heuristic observers.

Here is a brief summary of our findings. In Chapter 2, we found the HVS

fully whitens contrast in space and partially whitens spatial frequencies using the

contrast sensitivity function. Including intrinsic position uncertainty in the model

increases its explanation power to human detection behavior without introducing

any extra parameter. In Chapter 3, we found the target is more detectable to the

HVS when the background has a phase structure more similar to that of the tar-

get, as a high similarity in phase effectively reduces the effect of intrinsic position

uncertainty through the attraction and repulsion mechanisms. We also confirmed

the effect of phase-independent similarity, that the target is more detectable when

the amplitude spectrum of the background is less similar to that of the target. In

Chapter 4, we observed the puzzling phenomenon that the HVS searches better than

the prediction of Bayes-optimal decision rule given the human detectability map, de-

spite humans’ substantial loss of sensitivity in the fovea, and the implausibility of

neurally replicating the complex Bayes-optimal searcher. Correlated internal noise is
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a plausible explanation, as it would lower detection performance, but not search per-

formance. We observed the foveal neglect effect in our discrete-location display, that

is the loss of foveal detectability due to rational distribution of attentional resources,

which confirms a previous report on the search experiments in a continuous display

[59]. Furthermore, we discovered extremely simple heuristic decision rules for covert

search to achieve near-optimal overall performance, a surprising phenomenon that

is essential for explaining the supraoptimal search performance of human observers.

Therefore, in Chapter 5, we followed up with a systematic analysis of the Bayesian

heuristics in covert search. We found that increasing the number of parameters that

are used heuristically in the decision process generally increases the performance lag,

but near-optimal and optimal search performance can still be achieved even when all

parameters are heuristic, which indicates interaction among heuristic components can

cancel out their individual effects on search performance. Heuristic normalization, the

absence of log-likelihood centering, and heuristic max rule most likely decrease overall

search performance considerably. We also demonstrated the possibility of distinguish-

ing different heuristic compositions that achieve the same level of overall accuracy by

comparing the pattern in the location-dependent statistics.

Our discoveries in human detection and search in natural backgrounds can be

applied to tools that interact with human vision and tools that emulate human vision.

First, knowing how visible a target is to a typical (or professional) human observer

allows algorithms and devices to suggest target candidates that are not easily no-

ticeable to human observers but are highly visible to model observers. For example,

for threat detection, one could highlight background regions in medical and remote

sensing images that give a high template response, yet stay out of phase with the

target, because those targets are hard for humans to detect given intrinsic position
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uncertainty. The design and placement of visual contents in product packaging, ad-

vertisements and transportation can be consulted by how visible they will be on top

of backgrounds with varying luminance, contrast, spectrum, and phase-independent

and phase-dependent similarities, to achieve the intended goals, such as making the

expiration date on a package easy to find, and posting the traffic sign with maximized

visibility. A target may also be more detectable by pre-filtering in a way that compli-

ments the contrast sensitivity function for full whitening in spatial frequency. Virtual

Reality (VR) and Augmented Reality (AR) can be enhanced by placing virtual con-

tents at proper locations in the visual stimuli and removing naturalistic information

that would be filtered away by the HVS to save data transfer bandwidth. Second,

knowing when and when not a heuristic search style affects pre-defined metrics of

success allows clearer focus and better prioritization to mimic only behaviors that are

essential for novice observers to learn from and be trained into expert observers. For

instance, the abnormality (e.g., tumors in X-rays, MRIs, and CT scans) detection

and search patterns of medical professionals have parts that are crucial to eliminate

costly false negative diagnoses, and parts that are flexible heuristics and personal

preferences. One could train emerging medical perception workers (e.g., radiologists

and pathologists) first with the critical evaluation and computation components of

professional searchers. Similarly, when designing a robotic perception-action system,

such as autonomous vehicles, the Bayes-optimal detectors and searchers, combined

with deep learning algorithms, are capable to grasp the complexity of the real world

and navigate it with first principles. A lesson from heuristic analysis is that the

heuristic, human-like search strategies can be better than the optimal, computation-

ally expensive strategies, for effort reduction and performance improvement. With

heuristic analysis of visual search, one could better understand the diverse, heuristic
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behaviors of drivers and how they contribute to traffic accidents, including their in-

ability to perceive traffic rules and risks of collisions, in difficult traffic and weather

conditions. The psychophysical measurement of visual detection and search patterns

can be used to evaluate physiological states, such as macular degeneration, glau-

coma, and cataracts, and cognitive states, such as drunkenness, brain injury, early

Alzheimer’s disease, and attention deficit hyperactivity disorder (ADHD).

The most restrictive limitation of our Bayesian detection and search framework

is statistical clarity. Without knowing the statistical distribution of relevant visual

information, the ideal observer is impossible to obtain, and the heuristic searchers are

untestable. Therefore, our research requires either the measurement of natural statis-

tics or the artificial construction of visual stimuli. Given statistical clarity, the increas-

ing complexity of the distribution does not invalidate the ideal observer approach, but

only demands equally complex mathematical formulation and/or computational oper-

ations. In the case that the visual environment is highly volatile, uncertain, complex,

and ambiguous, Bayesian ideal observers may be intractable, and even if not, start

to fail in predicting human behavior. To stay with Bayesian computation, one often

needs to concede to heuristic detection and search models. A promising direction

of Bayesian modeling that tolerates statistical obscurity is to combine Bayesian and

machine learning algorithms, including the convolution neural network (CNN) and

the Transformer neural network. For examples, for non-stationary images, such as

natural and medical images, a deep neural network can be used to predict the de-

tectability map (and the prior map) of a target given the background on each trial

and integrate those values with Bayes optimal and heuristic computation to predict

human detection and search behavior.

Other limitations are much feasible to be overcome. For instance, the number
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of human observers and the type of targets can be increased given more resources

and time. Current analyses show different individuals detect and search with largely

similar patterns, with an overall scaling in thresholds. The same experimental pro-

cedures can measure performance also in other natural image databases to verify the

generalizability of specific conclusions with regard to natural images. We have not

included color and semantics in our visual stimuli and modeling, which are impor-

tant in real-world search tasks. They can become significant factors that influence

the prior and d′ maps. Despite the application of the central limit theorem, recep-

tive field responses from a neural population may not be strictly Gaussian, but more

Poisson-like [148]. Nevertheless, after including the log-likelihood ratio of two Poisson

distributions (into Equation 1.14), the current Bayesian detection and search frame-

work can be generalized. Lastly, the intrinsic position uncertainty is assumed to have

a uniform or Gaussian distribution, but in reality may be more anisotropic.

Modifying the Bayes ideal observer with biological components and heuristic

decision processes allows our framework not to be limited to Bayes-optimal visual

behavior. That implies our experimental design and computational modeling do not

necessarily need to be overly simple. It might be true that the HVS is incapable to

perform optimally like the ideal observer in many visual tasks, but it is false that

the HVS cannot be meaningfully modeled with Bayesian computation in those more

complex visual tasks.

My long-term research plan follows the grand roadmap in Section 1.2. First,

I will continue to investigate and understand human detection and covert search

behavior and computation. The partial whitening in spatial frequency of the HVS

can be directly confirmed in natural backgrounds instead of indirectly through power

law noises and medical images. One could explore how the asymmetric effect of
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phase similarity changes when the stimuli are blocked by phase similarity, testing

the existence (and quantitative relationships) of the early d′ peak point and the

break-even (d′ = 0) point, so we may know if human observers can learn to flip the

direction of the decision rule. Also, I am interested in the similarities and differences

of detecting an occluding target, instead of our current additive targets, are as the

local contrast modulation, surrounding spatial frequency and phase similarity change.

Second, with the knowledge of the HVS in simpler search tasks, one could build

Bayesian search models progressively through overt search, embodied search, and

social search. A most natural follow-up of our discoveries in covert search is to

measure and analyze overt search performance of human observers in similarly discrete

display, and then simulate other families of heuristic computation to compare with

the ideal overt searcher [77]. At least two new computation components emerge:

(1) probability update across fixations; (2) fixation selection. The former can have

heuristic memory that update crudely. The latter can have heuristic saccades that do

not follow the ideal fixation rule, but rules that require much less spatial integration

of information. Last but not least, the aforementioned fundamental research will be

translated and applied to real-world search problems. I am particularly interested in

the problems in medical image perception. Detection and search misses and delays in

diagnosis are much more likely to be perceptual (60-80%) than cognitive [149, 150],

and they often cause missed opportunities for early treatment. I am interested in

assisting medical professionals to detect and search targets with higher accuracy and

speed in medical images, by applying and interpreting the ideal searcher, near-optimal

heuristic searchers, and human-like searchers within a specific diagnosis context, such

as the digital breast tomosynthesis. One of a few examples mentioned in the early part

of this chapter is pre-filtering medical images in a way that compliments the contrast
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sensitivity function of the HVS, so full whitening in spatial frequency is achieved.

Furthermore, medical images are also much less accessible than natural images for

data privacy. That poses a challenge for deep neural networks to have sufficient data

for training. Besides augmenting data through generative models, Bayesian models

can be combined with neural networks to extract relevant information more efficiently.

Overall, our Bayesian detection and search framework is accurate, fast, flexible, and

interpretable for applications in medical image perception.
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Appendix A: Ideal detection and search rules with

utility

As mentioned in Chapter 1.9, the optimal decision rules for visual detection

and search are encapsulated in Equations 1.19, 1.20, and 1.22. Here, we discuss the

case when the utility function to be maximized is neither likelihood nor posterior

probability, but a linear combination of rates in different trial types.

Suppose the utility for responding x̂ when target present at x is uxx̂. The

optimal search rule that maximizes the expected posterior utility is

x̂ = arg max
x∈X

{∑
x∈X

[
uxx̂px

∏
y∈Y

p(Dy|x = x)

]}

= arg max
x̂∈X

{∑
x∈X

[
uxx̂px

∏
y∈Y

p(Dy|x = x)

]
/
∏
y∈Y

p(Dy|x = 0)

}

= arg max
x̂∈X

{∑
x∈X

[
uxx̂px

∏
y∈Y

p(Dy|x = x)

p(Dy|x = 0)

]}
(A.1)

Following the same steps in Equations 1.18 and 1.19, we obtain

x̂ = arg max
x̂∈X

[
ln
∑
x∈X

uxx̂pxlx

]
(A.2)

When the decision variable follows a Gaussian distribution with equal variance

at each location, we can represent the likelihood ratio as Equation 1.25, so the optimal

search rule becomes

x̂ = arg max
x̂∈X

{
ln
∑
x∈X

uxx̂px exp [d
′
x(R

′
x − d′x/2)]

}
(A.3)
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Now I derive the optimal detection rule. Because the target can at most

be present at one location, the posterior of target presence is the sum of posterior

probabilities of target at each present location (mutually exclusive events). The

present-absent utility ratio is

UR =

∑
y∈Y

∑
x∈X

[
uxypx

∏
y′∈Y

p(Dy′|x = x)

]
∑
x∈X

ux0px
∏
y′∈Y

p(Dy′|x = x)
(A.4)

Dividing both the numerator and the denominator by u00

∏
y′∈Y

p(Dy′ |x = 0),

we have

UR =

∑
y∈Y

∑
x∈X

gxypxlx∑
x∈X

gx0pxlx
(A.5)

where gxx̂ = uxx̂

u00
is the utility ratio between responding x̂ when the target is

at x and responding target-absent correctly.

When the decision variable follows a Gaussian distribution with equal variance

at each location, the present-absent utility ratio becomes

UR =

∑
x∈X

∑
y∈Y

gxypx exp[d
′
x(R

′
x − d′x/2))]∑

x∈X
gx0px exp[d′x(R

′
x − d′x/2)]

(A.6)

Therefore, the optimal detection rule that maximizes the expected utility

Ŝ =

{
a UR < 1

b UR > 1
(A.7)

If the utility matrix uxx̂ = Ix̂=x, where I is the indicator function, then the

optimal search rule in Equation A.2 becomes x̂ = arg max
x̂∈X

ln [p(x̂)lx̂], just as the MAP

186



search rule (Equation 1.20); the present-absent utility ratio in Equation A.5 becomes

UR =
∑
y∈Y

r(y)ly, where r(y) is the prior ratio, consistent with Equation 1.21.
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Appendix B: Ideal detection and search rules with

multiple targets

What are the optimal detection and search rules when multiple deterministic

targets can be present and at different locations?

Let each of the n possible target locations independently has a prior distribu-

tion with one or none of the m targets present (additive to backgrounds). A template

Tz is an element in the template set T = {T0, T1, · · · , Tm}, where T0 is the “zero

target” made of a zero matrix, indicating target-absent. Define Z = {0, 1, · · · ,m}

and k is the target-presence vector of length n, with each element in Z. For example,

if no target is present at any location, then k⃗ = (0, · · · , 0).

The prior probability of target azTz present at the location y is pyz. By defi-

nition,
m∑
z=0

pyz = 1. The log likelihood ratio at the location y between the presence of

target azTz and target absence is defined as llyz. Notice that the denominator of the

ratio can have different values for different locations.

The maximum likelihood response for the detection task in this setting is

undefined. The MAP response for the detection task in this setting is

Ŝ =


a ∀y ∈ Y, py0lly0 >

∑
z∈Z,z ̸=0

pyzllyz

b ∃y ∈ Y, py0lly0 <
∑

z∈Z,z ̸=0

pyzllyz
(B.1)

where “a” means no target is present at any location, and “b” means at least

one target is present at a location.

In the case where background at each location is uniform white noise, then in

the same way as Equation 1.14, the log likelihood ratio at the location y for target
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azTz is

llyz =
az
σ2
y

(Dy · Tz −
az
2
) (B.2)

As long as a decision variable follows Gaussian distributions with equal vari-

ance, just as Equation 1.25, we have

llyz = d′yz(R
′
yz − d′yz/2) (B.3)

where d′yz is the detectability for target azTz at the location y, and

R′
yz ∼

{
N(0, 1) z ̸= ky

N(d′yz, 1) z = ky
(B.4)

The definitions of the search task can vary in several ways. If the search task

asks to report the target-presence vector k⃗, then the maximum likelihood response

∀y ∈ Y, k̂y = arg max
z∈Z

llyz (B.5)

The MAP response

∀y ∈ Y, k̂y = arg max
z∈Z

pyzllyz (B.6)

If the search task asks to report the number of present targets q, then the

maximum likelihood response and the MAP response are both

q̂ =
∑
y∈Y

Ik̂y ̸=0 (B.7)

while
ˆ⃗
k is obtained from Equations B.5 or B.6.
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Appendix C: Ideal detection and search rules with

spatial-temporal correlation

Here I derive the ideal searcher where multiple template responses are mea-

sured across spatial location and time are correlated. If the template responses at a

location across time or at a time across locations are not correlated, the result below

can still be applied, as the covariance matrix becomes closer to an identity matrix.

The detection or search task can be divided temporally into c observation

cycles, and the cycle set C = {0, 1, · · · , cmax} (not the complex number set), where

“0” is the cycle prior to any observation, cmax is the maximum number of cycles

across locations. In the same notation as those in the earlier appendices, there are n

potential target-present locations, and the target absent “location” is “0”.

At the end of the c-th cycle, the probability of target presenting at location x

is px(c), and the log-likelihood and log-posterior ratios of target presenting at location

x versus target absence are llx(c) and lpx(c), respectively. For example, the prior of

target absence at the beginning of the task is px(c) = p0(0).

In an overt search, each cycle has three components: (1) information integra-

tion; (2) termination evaluation; (3) fixation selection. I will use this search scenario

to explain the ideal searcher with temporal correlation.

Information integration

How responses are integrated optimally? If they follow multivariate Gaussian

distributions with equal variance, such as N(µp,Σ
2) and N(µa,Σ

2), then the overall

cumulative log-likelihood ratio is
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LL = (µp − µa)
TΣ−1R+

1

2
(µT

aΣ
−1µa − µT

pΣ
−1µp) (C.1)

Note that the multiplication in the exponent term of the multivariate normal

distribution can be distributed, because Σ−1 is symmetric.

Then we re-center the template response so that µa = 0, and

LL = d′TR′ − 1

2
d′Td′ (C.2)

where d′ = Σ−1/2(µp − µa) is the normalized detectability, and R′ = Σ−1/2R

is the normalized template response. When the target is present at location y, R′
y ∼

N(d′
y, I), and ∀y′ ̸= y,R′

y′ ∼ N(0, I), where I is the identity matrix.

The number of dimensions of Σ is (n · cmax) × (n · cmax). In the case where

responses correlate either only spatially or only temporally, corresponding parts of

the covariance matrix turns into an identity matrix.

After decorrelation, the log-likelihood ratio at location y can be defined as

LLy = d′T
yR

′
y −

1

2
d′T

y d
′
y (C.3)

where d′
y and R′

y have cmax dimensions, and Σy has cmax × cmax dimensions.

The log-posterior ratio is LPy = ln py +LLy or LPy = ln py
p0
+LLy, if p0 ̸= 0, which is

proportional to the exponent of the posterior probability after information integration.

Termination evaluation

How does an observer evaluate and decide if a specific cycle can be the final

observation. Strictly speaking, this decision rule needs to collaborate with the decision
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rule for fixation selection to ensure optimality. For example, Najemnik and Geisler

[77] chose the fixation selection rule that maximizes the expected accuracy after the

fixation, assuming a maximum a posteriori (MAP) decision made right after the

fixation. Then the optimal termination rule is to end the search right after the

fixation, despite that means only one fixation is made for search.

In practice, an observer typically has resources more than what one fixation

requires, which means one can give more time and effort to observe and integrate

information. Nevertheless, in the next part (fixation selection), I will not derive the

optimal observer that maximizes expected accuracy more than one fixation ahead

(e.g., choosing the next fixation that maximizes search accuracy after 10 fixations),

due to analytical limitations. Instead, I will use the same expected accuracy with one-

fixation-ahead as in Najemnik and Geisler [77], and extend to the cases where the

template responses can be correlated across fixations, and the target can sometimes

be absent.

All that to say, termination evaluation is commonly decoupled from informa-

tion integration and fixation selection. We can set a single decision criterion γ, and

decide termination in the following way:

x̂(c) =

arg max
x∈X

px(c) max
x∈X

px(c) > γ

decide later else
(C.4)

We can also set two separate criteria γp and γa (assuming both are no less

than 0.5) for responding target-present and target-absent:

x̂(c) =


arg max

y∈Y
py(c) max

y∈Y
py(c) > γp

0 p0(c) > γa

decide later else

(C.5)
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Another timing to terminate the search is when the number of observation

cycles reaches a certain threshold value γc, which corresponds to the depletion of

search resources, such as

x̂(c) =

arg max
x∈X

px(c) max
x∈X

px(c) > γ or c > γc

decide later else
(C.6)

Fixation selection

Define F as the fixation space that includes all locations the observer can fixate

at, such as every pixel on the display. We denote its cardinality |F| = F . Fixation is

the most typical action to modify the d′ map, given a specific target and background.

If the target is always present, the fixation selection rule that maximizes the

expected accuracy with one fixation ahead (e.g., [77]) is

f̂(c+ 1) = arg max
f∈F

[∑
y∈Y

py(c)p (x̂(c+ 1) = y|y, f)

]
(C.7)

where p(x̂(c+1) = y|y, f) is the probability that the MAP response right after

the fixation is location y, given the target is present at y, after fixating at f . In other

words, x̂(c+ 1) = arg max
y∈Y

py(c+ 1).

For each location y, the predicted MAP response is correct if the posterior, or

the log-posterior ratio is the largest at y:

p(x̂(c+ 1) = y|y, f) = p(∀y′, lpy(c+ 1) ≥ lpy′(c+ 1)|y, f)

= p(∀y′ ̸= y, lpy(0) + LLy(c+ 1) ≥ lpy′(0) + LLy′(c+ 1)|y, f) (C.8)
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where LLy(c) is the cumulative likelihood ratio between target presenting at

location y and target absence after c cycles of observation, in the expression of Equa-

tion C.2.

Let ∀y, y′, c, Zy(c), Zy′(c)
i.i.d.∼ N(0, 1), ∀c, R′

y(c) = Zy(c)+d′y(f(c)) andR′
y′(c) =

Zy′(c). Combined with Equation C.2, the inequality in Equation C.8 becomes

ln
py(0)

py′(0)
+ d′T

yZy +
d′T

y d
′
y

2
≥ d′T

y′Zy′ −
d′T

y′d
′
y′

2
(C.9)

Note that d′, Zy, and Zy′ have c+ 1 dimensions.

Based on the summation of independent Gaussian distributions (Equation

1.15), the inequality can be simplified further into

ln
py(0)

py′(0)
+ ||d′

y||Zy +
||d′

y||2

2
≥ ||d′

y′ ||Zy′ −
||d′

y′||2

2
(C.10)

or

Zy′ ≤
ln py(0)

py′ (0)
+ ||d′

y||Zy +
1
2
(||d′

y||2 + ||d′
y′ ||2)

||d′
y′||

(C.11)

where Zy, Zy′
i.i.d.∼ N(0, 1), ||d′|| =

√
d′T

y′d
′
y′ is the vector norm of d′.

As this inequality needs to be true for all locations that are not y, we can

condition on Zy and obtain

p(x̂(c+ 1) = y|y, f) =
∞∫

−∞

p(zy)
∏
y′ ̸=y

p(zy′ ≤ q(y, y′, f, zy)|y, f)dzy

=

∞∫
−∞

ϕ(z)
∏
y′ ̸=y

Φ(q(y, y′, f, z))dz (C.12)
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where ϕ and Φ are the PDF and CDF of the standard normal distribution,

and

q(y, y′, f, z) =
ln py(0)

py′ (0)
+ ||d′

y||z + 1
2
(||d′

y||2 + ||d′
y′||2)

||d′
y′ ||

(C.13)

To this point, I derived the maximum expected (1-fixation-ahead) accuracy

observer when template responses correlate across fixations and the target is always

present.

If the target has an absent prior of p0(0), then the fixation selection rule

includes the target absent “location”, that is

f̂(c+ 1) = arg max
f∈F

[∑
x∈X

px(c)p (x̂(c+ 1) = x|x, f)

]
(C.14)

Following the derivation, I notice p(x̂(c + 1) = y|y, f) (∀y ∈ Y, see Equation

C.8) now includes the inequality lpy(0) + LLy(c + 1) ≥ 0. That changes the lower

bound of the expected accuracy integral (Equation C.12), so that

p(x̂(c+ 1) = y|y, f) =
∞∫

−(
lpy(0)

||d′y ||
+

||d′y ||
2

)

ϕ(z)
∏
y′ ̸=y

Φ(q(y, y′, f, z))dz (C.15)

The computation of q(y, y′, f, z) still follows Equation C.13. The last term to

calculate is

p(x̂(c+ 1) = 0|0, f) = p(∀y, 0 ≥ lpy(0) + ||d′
y||Zy −

||d′
y||2

2
|0, f)

=
∏
y∈Y

Φ

(
||d′

y||
2

− lpy(0)

||d′
y||

)
(C.16)
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In summary, when template responses are correlated temporally, the ideal

searcher normalizes those responses and corresponding d′ values by the covariance

matrix, considers the variation in responses after the next fixation, and selects a

fixation location that maximizes the expected accuracy.
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Appendix D: Multidimensional power-law noise

We name a noise in n dimensions following a radially symmetric power-law in

spectrum as a power-law noise. Its power spectral density (PSD) P (f⃗) = P (f), where

f⃗ is the spatial frequency, f = ||f⃗ || is the amplitude of the spatial frequency, and

P (f) is the one-dimensional, cross-sectional radial power spectral density, different

from the one-dimensional, total radial power spectral density Pt(f); the total noise

power

P =

∫
Pt(f)df =

∫
Sn−1(f)P (f)df (D.1)

where Sn−1(f) =
2πn/2

Γ(n/2)
fn−1 is the area of an (n-1)-sphere.

If P (f) ∝ f−β, then Pt(f) ∝ fn−β−1, the one-dimensional, cross-sectional

radial amplitude spectral density A(f) =
√

P (f) ∝ f−β/2, the one-dimensional, total

radial amplitude spectral density At(f) ∝
√

Pt(f) ∝ f (n−β−1)/2. If n ̸= β, the total

noise amplitude A ∝
√
P ∝ f (n−β)/2.

In my dissertation, 1/f noise specifically refers to the two-dimensional power-

law noise where β = 2, with P (f) ∝ f−2, A(f) ∝ f−1, Pt(f) ∝ f−1, At(f) ∝ f−1/2.

The total power

fmax∫
fmin

Pt(f)df ∝ ln(
fmax

fmin

) (D.2)

We allow the Pt(0) component of a power-law image to be either 0 or another

arbitrary value. The minimum non-zero frequency (that is still radially complete) is
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fmin = 1/s cycles per pixel, where s is the number of pixels of the shorter side of the

image. The maximum frequency is fmax = 1/2 cycles per pixel (Nyquist frequency).

Therefore, the total power scales with the log of image radius, that is ln(s/2).
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Appendix E: Confusion in position discrimination

by uncertainty

In a binary position discrimination task where the target is either shifted a

displacement amplitude of a to either the left or the right of the center, we define a

simple decision rule for the response as

Ŝ =

{
l, x < γ

r, x > γ
(E.1)

where S is the position state of the target, Ŝ is an estimate of that state, l indicates

the target is shifted to the left of the center, r indicates the target is shifted to the

right of the center, x is the is perceived horizontal location of the target, γ is a location

criterion parameter.

The two-state confusion matrix categorizes trials into the following types: (1)

true left rate: P (Ŝ = l|S = l); (2) true right rate: P (Ŝ = r|S = r); (3) false left rate:

P (Ŝ = l|S = r); (4) false right rate: P (Ŝ = r|S = l).

Figure E.1a illustrates a two-dimensional, isotropic Gaussian model of intrinsic

position uncertainty. When the target is on either the left at (−a, 0) or the right at

(a, 0), the perceived location follows these two probability density functions:

p(x, y|S = l) =
1

2πσ2
e−

1
2
(x+a

σ
)2− 1

2
( y
σ
)2 (E.2)

p(x, y|S = r) =
1

2πσ2
e−

1
2
(x−a

σ
)2− 1

2
( y
σ
)2 (E.3)

Over infinite trials, the true left rate
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(a) Gaussian model (b) Uniform model: ρ ≥ a, 0 < γ ≤ a

(c) Uniform model:
ρ ≥ a, a < γ ≤ ρ+ a

(d) Uniform model: ρ < a, a− ρ ≤ γ ≤ a

Figure E.1: Gaussian and uniform models for intrinsic position uncertainty. The
standard deviation of the Gaussian model is σ. The radius of the uniform model is
ρ. The displacement amplitude is a.

P (Ŝ = l|S = l) =

∫ ∞

−∞

[∫ γ

−∞
p(x, y|S = l)dx

]
dy (E.4)

z=x+a
σ=

∫ γ+a
σ

−∞

1√
2π

e−
z2

2 dz = Φ(
γ + a

σ
) (E.5)

where Φ(·) is the standard normal cumulative distribution function.

The false right rate P (Ŝ = r|S = l) = 1 − P (Ŝ = l|S = l) = Φ(−(a + γ)/σ).

The false left rate
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P (Ŝ = l|S = r) =

∫ ∞

−∞

[∫ γ

−∞
p(x, y|S = r)dx

]
dy

z=x−a
σ=

∫ γ−a
σ

−∞

1√
2π

e−
z2

2 dz = Φ(
γ − a

σ
) (E.6)

The true right rate P (Ŝ = r|S = r) = 1− P (Ŝ = l|S = r) = Φ((a− γ)/σ).

Alternatively, we consider a two-dimensional, isotropic uniform model of in-

trinsic position uncertainty. When the target is on either the left at (−a, 0) or the

right at (a, 0), the perceived location follows these two probability density functions:

p(x, y|S = l) =
1

πρ2
I(0,ρ](

√
x2 + y2 + a) (E.7)

p(x, y|S = r) =
1

πρ2
I(0,ρ](

√
x2 + y2 − a) (E.8)

where I is the indicator function.

The calculation of the confusion matrix in uniform distribution is more com-

plicated. I will first derive the cell values in the confusion matrix for major example

cases, and then write down the complete, case-by-case expression of the rate for each

trial type.

When ρ ≥ a, 0 < γ ≤ a (Figure E.1b), the segment highlighted by orange lines

has an area of A = ρ2(θ − sin θ)/2, where the angle θ = 2arccos((a − γ)/ρ), so that

sin θ = 2(a− γ)
√

ρ2 − (a− γ)2/ρ2, and

A = ρ2 arccos(
a− γ

ρ
)− (a− γ)

√
ρ2 − (a− γ)2 (E.9)

The rates in the confusion matrix can be calculated as
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P (Ŝ = l|S = r) =
A

πρ2
=

1

π

[
arccos(

a− γ

ρ
)− a− γ

ρ2

√
ρ2 − (a− γ)2

]
(E.10)

P (Ŝ = r|S = r) = 1− P (Ŝ = l|S = r) =
1

π

[
arccos(

γ − a

ρ
) +

a− γ

ρ2

√
ρ2 − (a− γ)2

]
(E.11)

P (Ŝ = r|S = l) = P (Ŝ = l|S = r)|γ=−γ =
1

π

[
arccos(

a+ γ

ρ
)− a+ γ

ρ2

√
ρ2 − (a+ γ)2

]
(E.12)

P (Ŝ = l|S = l) = 1− P (Ŝ = l|S = r) =
1

π

[
arccos(

−γ − a

ρ
) +

a+ γ

ρ2

√
ρ2 − (a+ γ)2

]
(E.13)

When ρ ≥ a, a < γ ≤ ρ+ a (Figure E.1c), the segment highlighted by orange

lines still has an area of A = ρ2(θ − sin θ)/2, but the angle θ = 2arccos((γ − a)/ρ),

so that sin θ = 2(γ − a)
√

ρ2 − (γ − a)2/ρ2, and

A = ρ2 arccos(
γ − a

ρ
)− (γ − a)

√
ρ2 − (γ − a)2 (E.14)

Therefore, the rates in the confusion matrix become

P (Ŝ = r|S = r) =
A

πρ2
=

1

π

[
arccos(

γ − a

ρ
)− γ − a

ρ2

√
ρ2 − (γ − a)2

]
(E.15)

P (Ŝ = l|S = r) =
1

π

[
arccos(

a− γ

ρ
) +

γ − a

ρ2

√
ρ2 − (γ − a)2

]
(E.16)

P (Ŝ = l|S = l) =
1

π

[
arccos(

−γ − a

ρ
) +

a+ γ

ρ2

√
ρ2 − (a+ γ)2

]
(E.17)

P (Ŝ = r|S = l) =
1

π

[
arccos(

γ + a

ρ
)− a+ γ

ρ2

√
ρ2 − (a+ γ)2

]
(E.18)

The current two cases share the same mathematical expression of the confusion

matrix!
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Furthermore, if ρ < a, a − ρ ≤ γ ≤ a (Figure E.1d), we can obtain the same

expression for a half of the confusion matrix, with the other half having the value of

either 0 or 1.

In summary,

P (Ŝ = r|S = r) =


0 γ > a+ ρ

1 γ < a− ρ
1
π

[
arccos(γ−a

ρ
) + a−γ

ρ2

√
ρ2 − (a− γ)2

]
else

(E.19)

P (Ŝ = l|S = r) =


1 γ > a+ ρ

0 γ < a− ρ
1
π

[
arccos(a−γ

ρ
) + γ−a

ρ2

√
ρ2 − (a− γ)2

]
else

(E.20)

P (Ŝ = l|S = l) =


0 γ < −a− ρ

1 γ > ρ− a
1
π

[
arccos(−γ−a

ρ
) + γ+a

ρ2

√
ρ2 − (γ + a)2

]
else

(E.21)

P (Ŝ = r|S = l) =


1 γ < −a− ρ

0 γ > ρ− a
1
π

[
arccos(γ+a

ρ
)− γ+a

ρ2

√
ρ2 − (γ + a)2

]
else

(E.22)
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Glossary

Amplitude-spectrum Similarity (SA) The cosine similarity of the target and back-

ground amplitude spectra. It is a phase-independent similarity measure.

Bayesian Decision Theory (BDT) A statistical framework of decision-making that

combines prior knowledge and new observation based on Bayes’ theorem.

Contrast Sensitivity Function (CSF) A function that describes the sensitivity of

the human visual system to gratings with different levels of spatial frequencies.

Eye-filtered Template Matching (ETM) A template matching model that ac-

counts for the eye filtering of the target and the background.

Eye-filtered, Reliability-weighted Template Matching (ERTM) A template

matching model that accounts for the eye and contrast-normalization filtering

of the target and the background.

Human Visual System (HVS) The eye and the parts of the central nervous sys-

tem that give humans the sense of vision.

Image Similarity (SI) The cosine similarity of the target and background in the

spatial domain. It is a phase-dependent similarity measure.

Intrinsic Position Uncertainty (IPU) The uncertainty on the target position due

to internal neural noise, no matter if the target location is always fixed (without

extrinsic uncertainty).

Lateral Ganglion Nucleus (LGN) A structure in the thalamus that relays visual

information from the retina to the visual cortex.
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Linearly Filtered Gaussian (LFG) Noise A Gaussian noise with linear filters

applied to the spatial and spatial frequency domains.

Log-likelihood Ratio (LLR) The log of a ratio of likelihoods, commonly used as

a decision variable.

Reliability-weighted Template Matching (RTM) A template matching model

that accounts for the contrast-normalization filtering of the target and the back-

ground.

Reliability-weighted, Whitened TemplateMatching (RWTM) A template match-

ing model that accounts for the contrast-normalization filtering and whitening

(in spatial frequency) of the target and the background.

Retinal Ganglion Cell (RGC) A neuron near the vitreous border in the retina

that transmits visual information.

Signal Detection Theory (SDT) Amathematical framework to quantify and clas-

sify choices for detection and discrimination.

Uncertain, Eye-filtered, Reliability-weighted Template Matching (UERTM)

A template matching model that accounts for the eye and contrast-normalization

filtering, and whitening (in spatial frequency) of the target and the background.

Whitened Template Matching (WTM) A template matching model that ac-

counts for the whitening (in spatial frequency) of the target and the background.
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