Skip to main content

Perfectly Elastic Collision in 2D

Elastic collision in two dimensions

Suppose two objects with masses m1m_1 and m2m_2 have an elastic collision in 2 dimensions. Before the collision, their velocities are v1\vec{v}_1 and v2\vec{v}_2; during the collision, their central locations are x1\vec{x}_1 and x2\vec{x}_2; after the collision, their velocities are u1\vec{u}_1 and u2\vec{u}_2.

fit

Elastic collision of two objects conserves momentum:

m1v1+m2v2=m1u1+m2u2m_1\vec{v}_1+m_2\vec{v}_2=m_1\vec{u}_1+m_2\vec{u}_2

and kinetic energy:

12m1v12+12m2v22=12m1u12+12m2u22\frac{1}{2}m_1\vec{v}_1^2+\frac{1}{2}m_2\vec{v}_2^2=\frac{1}{2}m_1\vec{u}_1^2+\frac{1}{2}m_2\vec{u}_2^2

We can calculate and obtain

u1=v1m22k(x1x2)m1+m2\vec{u}_1=\vec{v}_1-m_2\cdot\frac{2k(\vec{x_1}-\vec{x_2})}{m_1+m_2} u2=v2+m12k(x1x2)m1+m2\vec{u}_2=\vec{v}_2+m_1\cdot\frac{2k(\vec{x_1}-\vec{x_2})}{m_1+m_2} k=(v1v2)(x1x2)x1x22k=\frac{(\vec{v}_1-\vec{v}_2)\cdot(\vec{x}_1-\vec{x}_2)}{\|\vec{x}_1-\vec{x}_2\|^2}

This is the predictive equation for elastic collision in high dimensions.

Special cases of elastic collision in two dimensions

Let us consider some special cases of elastic collision in two dimensions.

Case 1

  • Back to collision in one dimension: just "remove" the vector symbols
k=v1v2x1x22k(x1x2)m1+m2=2v1m1+m22v2m1+m2k=\frac{v_1-v_2}{x_1-x_2}\Rightarrow\frac{2k(\vec{x_1}-\vec{x}_2)}{m_1+m_2}=\frac{2v_1}{m_1+m_2}-\frac{2v_2}{m_1+m_2}

This makes the velocities after collision fall back to the equations below:

u1=m1m2m1+m2v1+2m2m1+m2v2u_1=\frac{m_1-m_2}{m_1+m_2}v_1+\frac{2m_2}{m_1+m_2}v_2 u2=2m1m1+m2v1+m2m1m1+m2v2u_2=\frac{2m_1}{m_1+m_2}v_1+\frac{m_2-m_1}{m_1+m_2}v_2

Case 2

  • Two objects have the same mass: m1=m2m_1=m_2
  • One of the objects does not move initially: v2=0v_2=0
u1=v1k(x1x2)\vec{u}_1=\vec{v}_1-k(\vec{x_1}-\vec{x_2}) u2=k(x1x2)\vec{u}_2=k(\vec{x_1}-\vec{x_2}) k=v1(x1x2)x1x22v1(x1x2)=kx1x22k=\frac{\vec{v}_1\cdot(\vec{x}_1-\vec{x}_2)}{\|\vec{x}_1-\vec{x}_2\|^2}\Rightarrow \vec{v}_1\cdot(\vec{x}_1-\vec{x}_2)=k\|\vec{x}_1-\vec{x}_2\|^2

Then: u1u2=kv1(x1x2)k2x1x22=0\vec{u}_1\cdot \vec{u}_2=k\vec{v}_1\cdot(\vec{x}_1-\vec{x}_2)-k^2\|\vec{x}_1-\vec{x}_2\|^2=0

In other words, if two objects both move after collision, their moving directions must be a right angle. This is consistent with the 90-deg rule in billiards:

For a stun shot, where the cue ball has no top or bottom spin at impact with the object ball, the cue ball and the object ball separate at 90 degrees, regardless of the cut angle, except for a straight-in shot, in which case the cue ball stops in place.

Case 3

  • Two objects have the same mass: m1=m2m_1=m_2
  • Two objects share the same speed but moving to opposite directions: v1=v2\vec{v}_1=-\vec{v}_2
u1=v1k(x1x2)\vec{u}_1=\vec{v}_1-k(\vec{x_1}-\vec{x_2}) u2=v2+k(x1x2)=v1+k(x1x2)=u1\vec{u}_2=\vec{v}_2+k(\vec{x_1}-\vec{x_2})=-\vec{v}_1+k(\vec{x}_1-\vec{x}_2)=-\vec{u}_1

In other words, after collision, they still share another same speed but moving to opposite directions.