Perfectly Elastic Collision in 2D Elastic collision in two dimensions
Suppose two objects with masses m 1 m_1 m 1 and m 2 m_2 m 2 have an elastic collision in 2 dimensions. Before the collision, their velocities are v ⃗ 1 \vec{v}_1 v 1 and v ⃗ 2 \vec{v}_2 v 2 ; during the collision, their central locations are x ⃗ 1 \vec{x}_1 x 1 and x ⃗ 2 \vec{x}_2 x 2 ; after the collision, their velocities are u ⃗ 1 \vec{u}_1 u 1 and u ⃗ 2 \vec{u}_2 u 2 .
Elastic collision of two objects conserves momentum:
m 1 v ⃗ 1 + m 2 v ⃗ 2 = m 1 u ⃗ 1 + m 2 u ⃗ 2 m_1\vec{v}_1+m_2\vec{v}_2=m_1\vec{u}_1+m_2\vec{u}_2 m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2
and kinetic energy:
1 2 m 1 v ⃗ 1 2 + 1 2 m 2 v ⃗ 2 2 = 1 2 m 1 u ⃗ 1 2 + 1 2 m 2 u ⃗ 2 2 \frac{1}{2}m_1\vec{v}_1^2+\frac{1}{2}m_2\vec{v}_2^2=\frac{1}{2}m_1\vec{u}_1^2+\frac{1}{2}m_2\vec{u}_2^2 2 1 m 1 v 1 2 + 2 1 m 2 v 2 2 = 2 1 m 1 u 1 2 + 2 1 m 2 u 2 2
We can calculate and obtain
u ⃗ 1 = v ⃗ 1 − m 2 ⋅ 2 k ( x 1 ⃗ − x 2 ⃗ ) m 1 + m 2 \vec{u}_1=\vec{v}_1-m_2\cdot\frac{2k(\vec{x_1}-\vec{x_2})}{m_1+m_2} u 1 = v 1 − m 2 ⋅ m 1 + m 2 2 k ( x 1 − x 2 )
u ⃗ 2 = v ⃗ 2 + m 1 ⋅ 2 k ( x 1 ⃗ − x 2 ⃗ ) m 1 + m 2 \vec{u}_2=\vec{v}_2+m_1\cdot\frac{2k(\vec{x_1}-\vec{x_2})}{m_1+m_2} u 2 = v 2 + m 1 ⋅ m 1 + m 2 2 k ( x 1 − x 2 )
k = ( v ⃗ 1 − v ⃗ 2 ) ⋅ ( x ⃗ 1 − x ⃗ 2 ) ∥ x ⃗ 1 − x ⃗ 2 ∥ 2 k=\frac{(\vec{v}_1-\vec{v}_2)\cdot(\vec{x}_1-\vec{x}_2)}{\|\vec{x}_1-\vec{x}_2\|^2} k = ∥ x 1 − x 2 ∥ 2 ( v 1 − v 2 ) ⋅ ( x 1 − x 2 )
This is the predictive equation for elastic collision in high dimensions.
Special cases of elastic collision in two dimensions
Let us consider some special cases of elastic collision in two dimensions.
Case 1
Back to collision in one dimension: just "remove" the vector symbols
k = v 1 − v 2 x 1 − x 2 ⇒ 2 k ( x 1 ⃗ − x ⃗ 2 ) m 1 + m 2 = 2 v 1 m 1 + m 2 − 2 v 2 m 1 + m 2 k=\frac{v_1-v_2}{x_1-x_2}\Rightarrow\frac{2k(\vec{x_1}-\vec{x}_2)}{m_1+m_2}=\frac{2v_1}{m_1+m_2}-\frac{2v_2}{m_1+m_2} k = x 1 − x 2 v 1 − v 2 ⇒ m 1 + m 2 2 k ( x 1 − x 2 ) = m 1 + m 2 2 v 1 − m 1 + m 2 2 v 2
This makes the velocities after collision fall back to the equations below:
u 1 = m 1 − m 2 m 1 + m 2 v 1 + 2 m 2 m 1 + m 2 v 2 u_1=\frac{m_1-m_2}{m_1+m_2}v_1+\frac{2m_2}{m_1+m_2}v_2 u 1 = m 1 + m 2 m 1 − m 2 v 1 + m 1 + m 2